Пептидные гормоны список. Виды гормонов: пептиды

Ни один человеческий организм не способен существовать без гормонов. Они сопровождают людей повсюду, активно вырабатываясь в тот момент, когда в них возникает потребность. В человеческом теле функционирует большое количество разнообразных гормональных субстанций. Львиная доля этих гормонов приходится на долю пептидов.

Что представляют собой и какова основа действия пептидов

Пептидные гормоны — это вещества белковой природы, которые вырабатываются различными железами внутренней секреции в организме. К таким железам следует отнести следующие:

Однако не только в специфических железах вырабатываются пептиды, некоторые из них производятся жировой тканью, клетками желудка, некоторыми клетками печени и почек.

Механизм действия пептидных гормонов типичен для всех активных веществ этой природы и не зависит от места выработки самого гормона. Отличаются точки приложения активности и конечный эффект воздействия. Все гормоны действуют на органы-мишени посредством связи со специальными рецепторами, расположенными на мембране клетки. Каждый рецептор распознает только «свой» гормон, только тот, который может на него влиять. В клетке под влиянием связавшегося с рецептором пептида образуются посредники в виде различных ферментов. Эти ферменты в клетке активируют необходимые функции, и возникает эффективная ответная реакция на действие пептидного гормона.

Зачем нужен человеку гипофиз, и какие пептиды там формируются?

Гипофиз – это придаток мозга, который находится на нижней его части. Состоит из передней и задней доли. Именно передняя доля состоит из большого количества железистых клеток. Ниже представлен список пептидных гормонов передней доли гипофиза.

В задней доле гипофиза – нейрогипофизе, обычно гормонов не производится. Туда транспортируются пептиды из гипоталамуса, и здесь осуществляется их депонирование. Наиболее важными из депонированных гормонов являются вазопрессин и окситоцин. Вазопрессин выполняет две основные функции: регуляцию постоянства воды в организме и сужение сосудов. Окситоцин оптимизирует процесс родоразрешения и участвует в лактации, способствуя легкому выделению молока из желез матери.

Гипофиз тесно связан с гипоталамусом. Вместе с ним образует регуляторную гипоталамо-гипофизарную систему, которая участвует во многих функциях организма. Гипоталамус железой не является. Он представляет собой скопление клеток в небольшом пространстве промежуточного мозга. Однако клетки, находящие в гипоталамусе, являются активными продуцентами жизненно важных гормонов пептидной структуры.

Есть ли пептиды в гипоталамусе?

Все пептидные гормоны гипоталамуса это три различные группы активных веществ. Самая большая группа – рилизинговые гормоны. Они оказывают стимулирующее воздействие на активные вещества передней доли гипофиза. Они называются либеринами и влияют, согласно названию, на соответствующие гормоны в гипофизе. Основные из них следующие:

  • кортиколиберин;
  • тиролиберин;
  • соматолиберин;
  • фоллилиберин;
  • люлиберин.

Благодаря воздействию либеринов усиливается выработка гормонов гипофиза в те моменты, когда человеческий организм в этом нуждается. Однако не всегда выработку активных компонентов гипофиза надо усиливать. В некоторых ситуациях необходимо наоборот затормозить гормоны гипофиза. Для этого существует вторая группа гормонов гипоталамуса. Это статины, тормозящие деятельность соответствующих названию активных компонентов гипофиза.

  • соматостатин;
  • пролактостатин;
  • меланостатин.

Что регулируют пептидные вещества поджелудочной железы?

Не только в отделах головного мозга вырабатываются пептидные гормоны. Два важнейших гормона – инсулин и глюкагон, вырабатываются поджелудочной железой. Поджелудочная железа – это орган, находящийся в брюшной полости, в эпигастрии. Обладает секретирующей активностью внутренней, направленной на выработку пищеварительных гормонов, и внешней, при которой и образуются гормоны пептидной природы. Образование этих активных компонентов происходит в особых участках железы – островках Лангерганса.

Инсулин — важнейший гормон пептидной структуры в организме. Он участвует в обмене углеводной энергии, способствует улучшению транспорта углеводов в мышцы и жировую ткань. Однако главным эффектом является контроль гликемии – снижение концентрации сахара в крови. Антиподом является второй пептидный панкреатический гормон – глюкагон. Его участие в энергетическом обмене заключается в поднятии концентрации сахара в крови тогда, когда это необходимо организму.

А могут ли где-то еще образоваться пептиды?

К пептидным гормонам относится и паратиреоидный гормон, образуемый в паращитовидных железах. Функция этого активного компонента направлена на регуляцию обмена кальция в организме. Он угнетает формирование костной ткани и секретируется при снижении уровня кальция в крови.

Несколько активных пептидных веществ вырабатывается в щитовидной железе. Один из них полный антагонист паратиреоидному гормону. Его название кальцитонин. Он участвует в обмене кальция и фосфора и стимулирует активность клеток-строителей костной ткани.

Некоторые гормоны способны влиять на состав крови. Они носят название эритропоэтины, контролирующие образование эритроцитов и формирование гемоглобина крови, и тромбопоэтины, которые участвуют в процессе формирования тромбоцитов. Эти пептидные гормоны вырабатываются печенью и почками.

Заключение

Таким образом, пептидные гормоны участвуют во многих биологических процессах организма, играют важнейшую роль в контроле работы большинства органов и систем. Во многих случаях являются незаменимыми, от которых зависит само существование человека.

Пептидные гормоны, или белково-пептидные, - общее название гормонов, являющихся по своей структуре белками или пептидами. Пептидные гормоны в организме часто выполняют функцию запускающих факторов. Они являются стимулами к выработке других гормонов, в частности таких, как тестостерон и кортикостероиды. После применения пептидных гормонов значительно усиливаются анаболические процессы в организме, увеличивается рост мышц либо снижается порог болевой чувствительности.

К аналогам человеческих пептидных гормонов относятся синтетические препараты, или препараты, полученные с помощью современных генно-инженерных технологий. Это гонадотропин, гормон роста, адренокортикотропный гормон и эритропоэтин.

Гонадотропные гормоны образуются в передней доле гипофиза и стимулируют функции половых желез. Это дает эффекты, сходные с таковыми у тестостерона, т. е. рост мышечной массы.

Гормон роста вызывает рост скелета у человека до определенного предела и используется некоторыми спортсменами для наращивания мышечной массы. Препараты, содержащие соматотропин, как еще называют гормон роста, вызывают ряд побочных эффектов. Это могут быть аномалии в размерах рук, лица, внутренних органов, в частности печени. Экзогенный гормон роста вызывает заболевания суставов, развитие диабета, сердечно-сосудистых заболеваний.

Адренокортикотропный гормон, или АКТГ, увеличивает содержание кортикостероидов и используется спортсменами для восстановления травмированных тканей и мышц. При длительном использовании экзогенного АКТГ может произойти отмирание мышц. Помимо этого у атлета возникают проблемы со сном, повышается кровяное давление, развивается диабет, язва желудка и другие побочные эффекты.

Эритропоэтин увеличивает количество красных кровяных телец - эритроцитов. Это значительно улучшает результативность в видах спорта на выносливость за счет повышения кислородтранспортной функции крови. Поэтому в некоторых видах спорта международные федерации вынуждены вводить дополнительный допинг-контроль количества эритроцитов. Эритропоэтин влияет на гематокрит организма, т. е. повышает вязкость крови. В свою очередь для нормального снабжения тканей кислородом, хотя это звучит парадоксально в отношении действия препарата, стимулирующего эритропоэз, организм вынужден включать механизмы повышения кровяного давления. Напряженная сердечная деятельность в этом случае может вызвать инфаркт миокарда. Другие опасные эффекты действия эритропоэтина связаны с церебральным параличом, возможностью появления кровяных сгустков в легких.

  • Заключение

Ни один человеческий организм не способен существовать без гормонов. Они сопровождают людей повсюду, активно вырабатываясь в тот момент, когда в них возникает потребность. В человеческом теле функционирует большое количество разнообразных гормональных субстанций. Львиная доля этих гормонов приходится на долю пептидов.

Что представляют собой и какова основа действия пептидов

Пептидные гормоны это вещества белковой природы, которые вырабатываются различными железами внутренней секреции в организме. К таким железам следует отнести следующие:

Однако не только в специфических железах вырабатываются пептиды, некоторые из них производятся жировой тканью, клетками желудка, некоторыми клетками печени и почек.

Механизм действия пептидных гормонов типичен для всех активных веществ этой природы и не зависит от места выработки самого гормона. Отличаются точки приложения активности и конечный эффект воздействия. Все гормоны действуют на органы-мишени посредством связи со специальными рецепторами, расположенными на мембране клетки. Каждый рецептор распознает только «свой» гормон, только тот, который может на него влиять. В клетке под влиянием связавшегося с рецептором пептида образуются посредники в виде различных ферментов. Эти ферменты в клетке активируют необходимые функции, и возникает эффективная ответная реакция на действие пептидного гормона.

Зачем нужен человеку гипофиз, и какие пептиды там формируются?

Гипофиз – это придаток мозга, который находится на нижней его части. Состоит из передней и задней доли. Именно передняя доля состоит из большого количества железистых клеток. Ниже представлен список пептидных гормонов передней доли гипофиза.

В задней доле гипофиза – нейрогипофизе, обычно гормонов не производится. Туда транспортируются пептиды из гипоталамуса, и здесь осуществляется их депонирование. Наиболее важными из депонированных гормонов являются вазопрессин и окситоцин. Вазопрессин выполняет две основные функции: регуляцию постоянства воды в организме и сужение сосудов. Окситоцин оптимизирует процесс родоразрешения и участвует в лактации, способствуя легкому выделению молока из желез матери.

Гипофиз тесно связан с гипоталамусом. Вместе с ним образует регуляторную гипоталамо-гипофизарную систему, которая участвует во многих функциях организма. Гипоталамус железой не является. Он представляет собой скопление клеток в небольшом пространстве промежуточного мозга. Однако клетки, находящие в гипоталамусе, являются активными продуцентами жизненно важных гормонов пептидной структуры.

Есть ли пептиды в гипоталамусе?

Все пептидные гормоны гипоталамуса это три различные группы активных веществ. Самая большая группа – рилизинговые гормоны. Они оказывают стимулирующее воздействие на активные вещества передней доли гипофиза. Они называются либеринами и влияют, согласно названию, на соответствующие гормоны в гипофизе. Основные из них следующие:

  • кортиколиберин;
  • тиролиберин;
  • соматолиберин;
  • фоллилиберин;
  • люлиберин.

Благодаря воздействию либеринов усиливается выработка гормонов гипофиза в те моменты, когда человеческий организм в этом нуждается. Однако не всегда выработку активных компонентов гипофиза надо усиливать. В некоторых ситуациях необходимо наоборот затормозить гормоны гипофиза. Для этого существует вторая группа гормонов гипоталамуса. Это статины, тормозящие деятельность соответствующих названию активных компонентов гипофиза.

  • соматостатин;
  • пролактостатин;
  • меланостатин.

Что регулируют пептидные вещества поджелудочной железы?

Не только в отделах головного мозга вырабатываются пептидные гормоны. Два важнейших гормона – инсулин и глюкагон, вырабатываются поджелудочной железой. Поджелудочная железа – это орган, находящийся в брюшной полости, в эпигастрии. Обладает секретирующей активностью внутренней, направленной на выработку пищеварительных гормонов, и внешней, при которой и образуются гормоны пептидной природы. Образование этих активных компонентов происходит в особых участках железы – островках Лангерганса.

Инсулин важнейший гормон пептидной структуры в организме. Он участвует в обмене углеводной энергии, способствует улучшению транспорта углеводов в мышцы и жировую ткань. Однако главным эффектом является контроль гликемии – снижение концентрации сахара в крови. Антиподом является второй пептидный панкреатический гормон – глюкагон. Его участие в энергетическом обмене заключается в поднятии концентрации сахара в крови тогда, когда это необходимо организму.

А могут ли где-то еще образоваться пептиды?

К пептидным гормонам относится и паратиреоидный гормон, образуемый в паращитовидных железах. Функция этого активного компонента направлена на регуляцию обмена кальция в организме. Он угнетает формирование костной ткани и секретируется при снижении уровня кальция в крови.

Несколько активных пептидных веществ вырабатывается в щитовидной железе. Один из них полный антагонист паратиреоидному гормону. Его название кальцитонин. Он участвует в обмене кальция и фосфора и стимулирует активность клеток-строителей костной ткани.

Некоторые гормоны способны влиять на состав крови. Они носят название эритропоэтины, контролирующие образование эритроцитов и формирование гемоглобина крови, и тромбопоэтины, которые участвуют в процессе формирования тромбоцитов. Эти пептидные гормоны вырабатываются печенью и почками.

Заключение

Таким образом, пептидные гормоны участвуют во многих биологических процессах организма, играют важнейшую роль в контроле работы большинства органов и систем. Во многих случаях являются незаменимыми, от которых зависит само существование человека.

Пептиды (греч. πεπτος - питательный) - семейство веществ, молекулы которых построены из остатков α-аминокислот, соединённых в цепь пептидными (амидными) связями. Это природные или синтетические соединения, содержащие десятки, сотни или тысячи мономерных звеньев - аминокислот. На сегодняшний день известно более 1500 видов пептидов, определены их свойства и разработаны методы синтеза.

Свойства пептидов
Пептиды постоянно синтезируются во всех живых организмах для регулирования физиологических процессов. Свойства пептидов зависят, главным образом, от их первичной структуры - последовательности аминокислот, а также от строения молекулы и её конфигурации в пространстве (вторичная структура).

Значение

Пептидные гормоны и нейропептиды, например, регулируют большинство процессов организма человека, в том числе, и принимают участие в процессах регенерации клеток. Пептиды иммунологического действия защищают организм от попавших в него токсинов. Для правильной работы клеток и тканей необходимо адекватное количество пептидов. Однако с возрастом и при патологии возникает дефицит пептидов, который существенно ускоряет износ тканей, что приводит к старению всего организма. Сегодня проблему недостаточности пептидов в организме научились решать. Пептидный пул клетки восполняют синтезированными в лабораторных условиях короткими пептидами.

Синтез пептидов

Образование пептидов в организме происходит в течение нескольких минут, химический же синтез в условиях лаборатории - достаточно длительный процесс, который может занимать несколько дней, а разработка технологии синтеза - несколько лет. Однако, несмотря на это, существуют довольно весомые аргументы в пользу проведения работ по синтезу аналогов природных пептидов. Во-первых, путем химической модификации пептидов возможно подтвердить гипотезу первичной структуры. Аминокислотные последовательности некоторых гормонов стали известны именно благодаря синтезу их аналогов в лаборатории.

Во-вторых, синтетические пептиды позволяют подробнее изучить связь между структурой аминокислотной последовательности и её активностью. Для выяснения связи между конкретной структурой пептида и его биологической активностью была проведена огромная работа по синтезу не одной тысячи аналогов. В результате удалось выяснить, что замена лишь одной аминокислоты в структуре пептида способна в несколько раз увеличить его биологическую активность или изменить её направленность. А изменение длины аминокислотной последовательности помогает определить расположение активных центров пептида и участка рецепторного взаимодействия.

В-третьих, благодаря модификации исходной аминокислотной последовательности, появилась возможность получать фармакологические препараты. Создание аналогов природных пептидов позволяет выявить более «эффективные» конфигурации молекул, которые усиливают биологическое действие или делают его более продолжительным.

В-четвертых, химический синтез пептидов экономически выгоден. Большинство терапевтический препаратов стоили бы в десятки раз больше, если бы были сделаны на основе природного продукта.

Зачастую активные пептиды в природе обнаруживаются лишь в нанограммовых количествах. Плюс к этому, методы очистки и выделения пептидов из природных источников не могут полностью разделить искомую аминокислотную последовательность с пептидами противоположного или же иного действия. А в случае специфических пептидов, синтезируемых организмом человека, получить их возможно лишь путем синтеза в лабораторных условиях.

Пептидные гормоны

Пептидные гормоны - это многочисленный и наиболее разнообразный по составу класс гормональных соединений, представляющий собой биологически активные вещества. Их образование происходит в специализированных клетках железистых органов, после чего активные соединения поступают в кровеносную систему для транспортировки к органам-мишеням. По достижении цели гормоны специфически воздействуют на определенные клетки, взаимодействуя с соответствующим рецептором.

Нейропептиды - соединения, синтезируемые в нейронах, обладающие сигнальными свойствами. Действие нейропептидов на ЦНС очень разнообразно. Они воздействуют непосредственно на мозг и контролируют сон, влияют на память, поведение, процесс обучения, обладают обезболивающим действием.

Пептиды иммунологического действия

Наиболее изученные пептиды, участвующие в иммунном ответе - тафцин, тимопотин II и тимозин α1. Их синтез в клетках организма человека обеспечивает функционирование иммунной системы.

Пептидные биорегуляторы

На основе разработанной петербургскими учеными технологии из органов и тканей животных были выделены пептиды, обладающие тканеспецифическим действием, способные восстанавливать на оптимальном уровне метаболизм в клетках тех тканей, из которых они выделены. Важным отличием этих пептидов является их регулирующее действие: при подавлении функции клетки они её стимулируют, а при повышенной функции - снижают до нормального уровня. Это позволило создать новый класс лекарственных препаратов - пептидные биорегуляторы.

Первый из них - иммуномодулятор тималин - уже более 28 лет находится на фармацевтическом рынке и применяется для восстановления функции иммунной системы при заболеваниях различного генеза, включая онкологические заболевания. За ним последовали эпиталамин (биорегулятор нейроэндокринной системы), сампрост (препарат для лечения заболеваний предстательной железы), кортексин (препарат для лечения широкого спектра неврологических заболеваний), ретиналамин (препарат для лечения дегенеративно-дистрофических заболеваний сетчатки). За 25 лет широкого применения пептидных биорегуляторов их получили более 15 млн человек. При этом не было выявлено противопоказаний к их применению и побочного действия.

Стимуляторы гормона роста

Главные регуляторы секреции гормона роста - пептидные гормоны гипоталамуса (соматостатин и соматолиберин), которые выделяются нейросекреторными клетками гипоталамуса в портальные вены гипофиза и действуют непосредственно на соматотропы. Однако на баланс этих гормонов и на секрецию соматотропина влияет множество физиологических факторов. Учеными доказано, что уровень секреции гормона роста можно увеличить в 3-5 раз, без применения гормональных средств.

Пептиды - наиболее мощные стимуляторы гормона роста, увеличивают концентрацию в 7-15 раз, при этом стоимость эквивалентного курса в несколько раз ниже:

  • GHRP-2
  • GHRP-6
  • GRF (1-29)
  • CJC-1295
  • Ипаморелин
  • HGH Frag (176-191) - фрагмент

Гормон роста и пептиды в бодибилдинге

В настоящее время на рынке все чаще и чаще встречаются пептиды, которые представляют собой стимуляторы гормона роста. Наиболее популярные пептиды в бодибилдинге:

  • Из группы Грелина (GHRP): (создают выраженный пик концентрации ГР сразу после введения, вне зависимости от времени суток и наличия соматостатина в крови).
    • GHRP-6 и Гексарелин
    • GHRP-2
    • Ипаморелин
  • Из группы Гормон роста рилизинг гормона (GHRH): (введение в организм вызывает волнообразный подъем концентрации, который будет слабым в часы когда естественная секреция ГР снижена за счет соматостатина, и высоким во время естественного подъема концентрации ГР (например, ночью). Иными словами GHRH усиливает секрецию ГР, не нарушая естественную пульсообразную кривую.)
    • GRF (1-29) Серморелин
    • CJC-1295
  • HGH Frag (176-191) - фрагмент гормона роста (жиросжигатель)

Преимущества пептидов

У многих возникают вопросы, зачем использовать новые пептидные вещества, если существует искусственный гормон роста? Ответ прост: пептидные стимуляторы имеют несколько веских преимуществ:

  • Пептиды значительно дешевле гормона роста. Стоимость аналогичного курса будет в несколько раз ниже.
  • Различные механизмы действия и периоды полувыведения позволяют манипулировать концентрационной кривой, добиваясь оптимального анаболического отклика.
  • Различное воздействие на чувство голода и метаболизм, позволяет отдавать предпочтение тем или иным веществам.
  • На данный момент производство и распространение пептидов не регулируется законом, поэтому их без опаски можно заказывать в сети.
  • Быстро и бесследно разрушаются, поэтому можно не бояться за допинг контроль.

Пептиды, так же как и классический гормон роста легко проверить на подлинность. Для этого достаточно сдать анализы на уровень соматотропина в плазме после введения препарата.

Как принимать пептиды. Основные правила приёма пептидов:

  • Местом инъекции служит область живота в 8см от пупка;
  • Угол наклона шприца при инъекции составляет 45 градусов;
  • Делать инъекцию строго на голодный желудок;
  • Не принимать пищу в течении 40 минут после инъекции;
  • Перерыв между инъекциями должен составлять не менее 4 часов.

Правила разведения пептидов в стерильной воде для инъекций:

  • Разводить пептид стерильной водой для инъекций по стенке ампулы;
  • При разведении избегать падений капли воды на пептидную массу;
  • Не смешивать различные пептиды в одной ампуле;
  • Не трясти разведённый в воде пептид;
  • Не держать смесь пептидов из разных ампул в одном шприце долгое время;
  • Беречь от прямых солнечных лучей;
  • Хранить приготовленный раствор в холодильнике при температуре 2-8 градусов;
  • Срок хранения приготовленного раствора до 7-10 дней.
  • Использовать инсулиновый шприц на 100 инсулиновых единиц U100 (оранжевая крышка, см на картинку);
  • Не путать инсулиновые единицы с делениями;
  • Четко следовать дозировке и рекомендациям спортивного врача;
  • Повысить количество белков в дневном рационе до 3г на 1 кг веса;
  • Ведите дневник инъекций, что бы не забыть что и когда колоть;
  • Делайте инъекции в одной и той же последовательности (что бы не перепутать препараты и не вколоть 2раза одно и тоже);
  • В области живота есть места где инъекция безболезненна и напротив;
  • Постарайтесь избежать инъекций в сосуды;
  • После инъекции шприц не вытаскивать 5-10 секунд, что бы исключить вытекание препарата.

Перед началом курса вам необходимо купить

  • Инсулиновые шприцы U100 (1 миллилитр). В аптеке 70-100р;
  • Ампулы с стерильной водой для инъекций. В аптеке 30-50р;
  • Шприцы с длинной иглой для разведения пептидов. В аптеке 5-10р;
  • Ватные диски. В аптеке 30-50р;
  • Спирт или спиртовые салфетки. В аптеке 40-60р.

Основные правила стерильности при инъекциях

  • Инъекцию проводить чистыми руками;
  • Протереть спиртом горлышко ампулы с пептидом перед эксплуатацией;
  • Протереть спиртом место инъекции (можно пренебречь, так как риск заражения слишком мал, если использовать инсулиновые шприцы);
  • Исключить соприкасание иглы с не стерильными поверхностями;
  • Исключить попадание воздуха в шприц;
  • Шприц используется только 1 раз (в целях экономии можно дневную дозу 1 препарата набирать в отдельный шприц).

Пептиды. Возможные побочные явления

Пептиды используются достаточно долго и так таковых побочных явлений не выявилось, однако следует заметить некоторые негативные реакции организма на препарат:

  • Сильная головная боль;
  • Периодическое чувство слабости;
  • Повышение давления;
  • Сниженное внимание;
  • Вздутие кожи и зуд в месте инъекций;
  • Твёрдые овальные уплотнения под кожей после инъекций (гематомы).

Какие гормоны следят за запасами энергии в нашем теле и выращивают мышцы? А какие делают так, чтобы мы любили друг друга? И самое интересное – чьими силами была приручена собака, друг человека? Про самые известные пептидные гормоны – инсулин и окситоцин – читайте в нашем новом материале.

БОЛЬШЕ ВСЕХ

Про гормоны в общем , а вот тут можно прочитать про , и группу гормонов. Сегодня говорим о последней, самой большой группе гормонов – пептидах.

В основном они вырабатываются гипофизом, самые популярные пептиды этой группы – вазопрессин, окситоцин, липотропный гормон.

Огромная часть пептидов рождается в гипоталамусе, их называют рилизинг-гормонами, потому что они стимулируют выделение других гормонов (от англ. release – выделять).

★ Еще есть пептиды, синтезируемые поджелудочной железой, например, инсулин.

ИНСУЛИН

Фото: @elsas_wholesomelife

Инсулин неспроста является одним из самых изученных гормонов. Он участвует в обмене веществ практически всех тканей организма, но главная его работа – в снижении количества глюкозы в крови.

При нарушении производства инсулина в организме развивается сахарный диабет первого типа, а при нарушении взаимодействия инсулина и тканей – диабет второго типа.

Инсулин сравнивают с умным регулировщиком, которые замедляет движение на опасном участке дороги, перенаправляя потоки так, чтобы не происходило никаких столкновений. Не самая простая метафора, но суть передает точно.

Посмотрим, что еще делает инсулин.

  • Помогает росту мышц: во-первых, он стимулирует производство белка, а во-вторых – помогает переносить аминокислоты в мышечные волокна.
  • Препятствует разрушению мышц – а это очень важно, ведь если разрушается больше или даже равно тому, сколько создается, никакого роста не выйдет.
  • Подавляет чувство голода и снижает аппетит.

Что ж, картина весьма привлекательная для всех, кто следит за своим весом и внешним видом. Но есть и ложечка дегтя, потому что инсулин делает еще и много чего другого.

  • Препятствует расщеплению жировой ткани, так что если вы хотите похудеть, инсулин может быть конкретно против.
  • Повышает давление, и если вы гипертоник, скорее всего, содержание инсулина в крови у вас повышено.
  • Стимулирует рост нежелательных образований, ведь инсулин часто не особенно щепетилен к тому, что именно ему выращивать.

ОКСИТОЦИН

Фото: @anthropologie

Это гормон, который вырабатывается, когда мы обнимаемся, занимаемся сексом или кормим грудью. Его называют еще «молекулой любви», ведь именно окситоцин формирует привязанность. Считается, что у женщин этого пептидного гормона вырабатывается больше, но мы верим, но существуют и мужчины, щедрые на любовь и выработку окситоцина.

Обнаружен окситоцин был очень романтично. При сравнении двух видов полевок (это такие мышки) – степных и луговых – была замечена странная закономерность. Первые, степные, были моногамны, а вот луговые – нет. Степные мыши-полевки были привязаны друг к другу, выращивали детенышей, нежно заботясь о них. Луговые имели беспорядочную личную жизнь и меняли партнеров как перчатки. Все дело в том, что у первых окситоцина в крови было гораздо больше, чем у вторых, а вот когда степным мышам сделали инъекцию гормона любви – тут-то они и превратились в нежных и любящих семьянинов.

Первоначально окситоцин был задуман природой как ускоритель родов. Действительно, именно выброс этого гормона позволяет разродиться: и женщине, и кошке, и корове. Более того, окситоцин призван стирать из памяти негативные воспоминания, уж не по этой ли причине матери так быстро забывают все муки родов и начинают любить своего ребенка несмотря на всю боль, которую пришлось испытать?

Фото: @talinegabriel

Выработка окситоцина повышается, когда мы обнимаемся, возимся с любимым псом (кстати, в деле одомашнивания собак окситоцин тоже сыграл одну из главных ролей), влюбляемся и думаем об объекте чувств. Этот гормон снижает тревожность, успокаивает нас, благодаря нему все становится неважным. К слову, есть гормон, совершенно противоположного действия – вазопрессин – он заставляет нас учиться, работать, тревожиться. Тоже полезный гормон, безусловно, но о нем мы расскажем как-нибудь в другой раз.

На этом закончим рассказ о пептидах, хотя писать о них можно вечно, все-таки самая многочисленная группа гормонов. И напоследок желаем, чтобы окситоцина в вашей жизни всегда было чуточку больше, чем вазопрессина!

Статьи по теме