Что такое «токамак»? Термоядерный реактор откроет человечеству новую эру. Технократическое движение Принцип работы токамак

В токамаке удерживается не стенками камеры, которые не способны выдержать необходимую для термоядерных реакций температуру, а специально создаваемым комбинированным магнитным полем - тороидальным внешним и полоидальным полем тока, протекающего по плазменному шнуру. По сравнению с другими установками, использующими магнитное поле для удержания плазмы, использование электрического тока является главной особенностью токамака. Ток в плазме обеспечивает разогрев плазмы и удержание равновесия плазменного шнура в вакуумной камере. Этим токамак, в частности, отличается от стелларатора , являющегося одной из альтернативных схем удержания, в котором и тороидальное, и полоидальное поля создаются с помощью внешних магнитных катушек.

Токамак-реактор на данный момент разрабатывается в рамках международного научного проекта ITER .

Энциклопедичный YouTube

  • 1 / 5

    Предложение об использовании управляемого термоядерного синтеза для промышленных целей и конкретная схема с использованием термоизоляции высокотемпературной плазмы электрическим полем были впервые сформулированы советским физиком О. А. Лаврентьевым в работе середины 1950-го года. Эта работа послужила катализатором советских исследований по проблеме управляемого термоядерного синтеза. А. Д. Сахаров и И. Е. Тамм в 1951 году предложили модифицировать схему, предложив теоретическую основу термоядерного реактора, где плазма имела бы форму тора и удерживалась магнитным полем. Одновременно эта же идея была предложена американскими учёными, но «забыта» до 1970-х годов .

    В настоящее время токамак считается наиболее перспективным устройством для осуществления управляемого термоядерного синтеза .

    Устройство

    Токамак представляет собой тороидальную вакуумную камеру , на которую намотаны катушки для создания тороидального магнитного поля . Из вакуумной камеры сначала откачивают воздух, а затем заполняют её смесью дейтерия и трития . Затем с помощью индуктора в камере создают вихревое электрическое поле . Индуктор представляет собой первичную обмотку большого трансформатора , в котором камера токамака является вторичной обмоткой. Электрическое поле вызывает протекание тока и зажигание в камере плазмы .

    Протекающий через плазму ток выполняет две задачи:

    • нагревает плазму так же, как нагревал бы любой другой проводник (омический нагрев);
    • создаёт вокруг себя магнитное поле. Это магнитное поле называется полоидальным (то есть направленное вдоль линий, проходящих через полюсы сферической системы координат).

    Магнитное поле сжимает протекающий через плазму ток. В результате образуется конфигурация, в которой винтовые магнитные силовые линии «обвивают» плазменный шнур. При этом шаг при вращении в тороидальном направлении не совпадает с шагом в полоидальном направлении. Магнитные линии оказываются незамкнутыми, они бесконечно много раз закручиваются вокруг тора, образуя так называемые «магнитные поверхности» тороидальной формы.

    Наличие полоидального поля необходимо для стабильного удержания плазмы в такой системе. Так как оно создается за счёт увеличения тока в индукторе, а он не может быть бесконечным, время стабильного существования плазмы в классическом токамаке пока ограничено несколькими секундами. Для преодоления этого ограничения разработаны дополнительные способы поддержания тока. Для этого может быть использована инжекция в плазму ускоренных нейтральных атомов дейтерия или трития или микроволновое излучение .

    Кроме тороидальных катушек для управления плазменным шнуром необходимы дополнительные катушки полоидального поля . Они представляют собой кольцевые витки вокруг вертикальной оси камеры токамака.

    Одного только нагрева за счёт протекания тока недостаточно для нагрева плазмы до температуры, необходимой для осуществления термоядерной реакции. Для дополнительного нагрева используется микроволновое излучение на так называемых резонансных частотах (например, совпадающих с циклотронной частотой либо электронов , либо ионов) или инжекция быстрых нейтральных атомов.

    УСТРОЙСТВО И РАБОТА ТОКАМАКА

    Принцип действия, принципиальная схема токамака, параметры установки, устойчивость тороидального плазменного шнур, параметр удержания b , энергетическое время жизни.

    Принцип действия. Принципиальная схема

    В заключительной главе подробнее рассмотрим устройство и особенности работы токамака - наиболее сложной, но, пожалуй, и наиболее важной плазменной установки. Именно с токамаком сейчас связывают надежду на практическую реализацию управляемого термоядерного синтеза. Сооружаемый в настоящее время международным сообществом термоядерный реактор-токамак ИТЭР- это решающий шаг на пути создания к середине века термоядерной энергетики. Токамак – название созданной в соответствии с предложением и в середине прошлого века в Курчатовском институте установки ТОковая КАмера с МАГнитными катушками (Г трансформировали в К при характерном в русском языке смягчении согласных).

    Токамак – это трансформатор, вторичной «обмоткой» которого является создаваемый в плазме ток. Магнитная термоизоляция обеспечивается сильным тороидальным магнитным полем B j º Bt , которое вместе с полоидальным полем B q º Bp тока Ip создает необходимую для подавления тороидального дрейфа плазмы и сохранения устойчивости шнура винтовую конфигурацию магнитных силовых линий (рис.13.1а). Показанная на рис.13.1 проводящая оболочка (кожух) также служит для пассивной стабилизации плазменного шнура при его кратковременных возмущениях.

    Связь между толщиной кожуха и характерным временем возмущения t 1/2 , которое демпфируется возникающими в кожухе при таком изменении магнитного потока токами Фуко, определяется глубиной скин-слоя, которая в практических единицах может быть представлена в виде очень полезной формулы: https://pandia.ru/text/79/389/images/image002_55.gif" width="69" height="25 src=">- удельное сопротивление материала кожуха, отнесенное к удельному сопротивлению меди при 200С, t 1/2 –полупериод возмущения.

    Генерация и поддержание тока в плазме осуществляется с помощью индуктора , который при изменении тока в нем создает на тороидальной оси ЭДС ε = - d Y / dt , где Y - магнитный поток внутри плазменного кольца с током. Для электрического пробоя заполняющего камеру газа необходимо значительно большее, чем для поддержания тока, значение ε, поэтому при создании плазмы ток в обмотках индуктора меняют значительно

    position:absolute; z-index:59;left:0px;margin-left:251px;margin-top:131px;width:12px;height:39px">

    Bz

    https://pandia.ru/text/79/389/images/image008_21.gif" alt="Подпись:" align="left hspace=12 alt=" width="407" height="65">

    быстрее, чем в фазе его долговременного поддержания. Для того, чтобы поле индуктора не искажало при пробое тороидальное поле, а также необходимую для удержания плазмы винтовую магнитную конфигурацию, используют магнитопроводы из материала с высокой магнитной проницаемостью (магнитомягкое железо), замыкающие магнитный поток вне индуктора. Индуктор может быть с железным сердечником, так и воздушным - вообще без использования железа. В последнем случае устанавливают полоидальные катушки, которые компенсируют поле индуктора в области плазмы. Равновесие кругового тока в продольном (по отношении к нему) магнитном поле достигается путем приложения дополнительного вертикального магнитного поля Bz , создающего направленную к оси системы силу. Поле Bz создается полоидальными управляющими обмотками (рис.9.1б). На рис.9.2 показаны основные элементы электромагнитной системы токамака, и циклограмма его работы. Кроме указанных обмоток в токамаках дополнительно устанавливают катушки для обеспечения равновесия плазмы по вертикали и коррекции магнитного поля.

    Устойчивость тороидального плазменного шнура

    Устойчивость тороидального плазменного шнура, возможна лишь при выполнении критерия Крускала - Шафранова q = (a / R )(Bt / Bp ) >1 , для чего ток плазмы Ip не должен превышать определенного значения. Действительно, связь поля и тока

    position:absolute;z-index:5;left:0px;margin-left:216px; margin-top:177px;width:42px;height:41px">position:absolute; z-index:24;left:0px;margin-left:39px;margin-top:99px;width:62px;height:119px">


    Рис.13.2а Электромагнитная система токамака.

    где , l и I выражены соответственно в эрстедах, сантиметрах и амперах, в случае аксиальной симметрии (H ∙2 p r =0,4 p I ) дает для поля H =0,2 I / r . Если у токамака большое аспектовое отношение A = R / a , то в первом приближении полоидальное поле на границе плазменного шнура Bp » 0,2 Ip / a , и q =(5 a 2/ R )(Bp / Ip ) >1

    Таким образом, существует ограничение на величину тока в плазме.

    n . При малых значениях n в вихревом поле E = ε/2 p R ne £ 0,07j p , где плотность плазмы в [м-3], а плотность тока в [МА/м2].

    Рис.13.2б Циклограмма работы токамака (качественно): JT –ток в катушках тороидального соленоида, J и - ток в обмотке индуктора, Jp - ток плазмы, J у. к. ток в управляющих катушках (увеличивается с ростом T плазмы).

    Другие ограничения связаны с плотностью плазмы n . При малых значениях n в вихревом поле E = ε/2 p R электроны могут перейти в режим ускорения («уйти в просвист»). Критическая для такого режима концентрация плазмы определяется критерием Разумовой ne £ 0,07j p , где плотность плазмы в [м-3], а плотность тока в [МА/м2]. То есть, предел по току плазмы линейно зависит от ее концентрации Ip ³ (p ka 2/0,07) ne . При больших n также существует предел по плотности nMH £ 2 Bt / qR (предел Мураками –Хьюгелла), связанный с балансом мощностей в периферийной плазме. При больших плотностях, когда потери плазмы за счет излучения и теплопроводности начинают превышать выделение в ней энергии за счет протекающего по плазме тока, происходит контракция (сжатие) плазменного шнура.

    Визуально область рабочих режимов токамака удобно проиллюстрировать так называемой диаграммой Хьюгелла-Мураками (рис.13.3). На ней вместо плотности по оси абсцисс откладывают величину ей пропорциональную для токамака с заданными большим радиусом плазмы и значением тороидального поля M = (R / Bt ) n (число Мураками). Область 1-2 соответствует пределу Разумовой, связанному с убегающими электронами, область 2-3 определяется МГД устойчивостью в соответствии с критерием Крускала-Шафранова,

    Рис.13.3 Диаграмма Хьюгелла-Мураками устойчивых режимов токамака.

    область 3-4 – это предел по плотности Мураками. Энерговыделение в плазме при протекании в ней тока пропорционально QOH µ Ip 2 , а потери на излучение Qr µ n 2 e . Из (13.1) следует, что QOH µ [(Bt / R ) q ]2, а отношение Qr / QOH µ n 2 (R / Bt )2 q 2 º H 2 . Число H называется числом Хьюгелла, при сохранении пропорциональности между энерговыделением и излучением (H = cons t ) q -1 пропорционально числу Мураками M . Участок диаграммы 4-1 и отражает эту пропорциональность.

    При нагреве плазмы возникают проблемы, связанные с МГД равновесием плазменного шнура в токамаке. Из условия равновесия плазмы в МГД приближении суммарное давление плазмы и магнитного поля в шнуре должны уравновешиваться давлением магнитного поля снаружи от плазменного шнура. С ростом температуры давление плазмы < P >= nkT растет и, соответственно, растет сила FRpl , необходимая для удержания на месте этого раздувающегося под внутренним давлением плазменного «баллона». Грубо эта сила может быть оценена из работы по «растяжению баллона» W » < P >2 p R p a 2 , FRpl = - dW / dR = =2 p 2 a 2< P > . Следовательно, с ростом давления плазмы надо увеличивать и удерживающее плазму на радиусе R вертикальное поле Bz . Посмотрим, что при этом происходит с суммарным полоидальным полем, которое складывается из поля тока и внешнего вертикального поля Bz . Допустим, что поле Bz однородно по R , тогда в случае для обеспечения равновесия оно должно совпадать с полем тока на его внешней стороне, усиливая это поле. На внутренней же стороне поле BZ ослабляет поле тока и с ростом давления плазмы возможна ситуация, когда на некотором расстоянии от центра токамака оно скомпенсирует последнее с образованием так называемой x – точки . Силовые линии вне нее разомкнуты. С увеличением давления и, соответственно, необходимого для удержания плазмы поля Bz x -точка приближается к плазменному шнуру и при b q = < p >/(B 2 q /8 p )= R / a касается его, что позволяет ей свободно «вытекать» из установки.

    То есть, при b q < R / a (13.2)

    удержание невозможно.

    B q = - Bz

    position:absolute; z-index:29;left:0px;margin-left:159px;margin-top:41px;width:50px;height:32px">

    + BZ

    font-size:10.0pt">Рис.13.4 Суперпозиция поля тока и вертикального поля, приводящая к возникновению x -точки.

    Параметр удержания b .

    Ограничение по полоидальному бета приводит и ограничению по полному значению этого параметра в токамаке. Полное b находится из сложения векторов тороидального и полоидального полей и равно

    Выражая тороидальное поле через полоидальное и запас устойчивости q =(a / R )(Bt / B q ) получаем

    Учитывая (13.2) окончательно имеем:

    Так как А и q больше единицы, то значение b ограничено сверху, например, при А = 3 и q =2, что примерно соответствует значениям, закладываемым в проектах термоядерного реактора на основе токамака, согласно (13.3) b max » 0,08.

    Мы рассматривали токамак с круглым сечением плазмы, однако, в проекте реактора ИТЭР сечение плазмы вытянуто вдоль вертикальной оси (рис.13.5). Тому несколько причин. Первая, в тороидальном соленоиде D –образной формы при той же длине обмотки и, соответственно, мощности питания можно запасти значительно больше энергии магнитного поля, кроме того, такой соленоид выдерживает значительно большие механические нагрузки, возникающие при сильных магнитных полях, чем соленоид с круглыми катушками. Достаточно упомянуть, что при поле 0,5 Тл внутренне давление со стороны поля на катушки составляет одну избыточную атмосферу. Учитывая, что магнитное давление квадратично зависит от поля, для поля в 5 Тл, которое необходимо для реактора, получаем давление в 100 раз большее. Сила, действующая на единицу длины проводника, в практической системе единиц равна:

    https://pandia.ru/text/79/389/images/image043_4.gif" width="184" height="45 src=">

    Из-за того, что поле в тороидальном соленоиде растет к центру µ 1/ Bt , на различные участки катушки действует разная сила, создающая изгибающий момент относительно точки опоры катушки. Суммарная сила, действующая на катушку (см. рис.13.5), направлена к центру, ее легко оценить из запасенной в объеме V полной энергии W маг магнитного поля: FR = - dW маг/ dR » - (B 02/8 p ) V » (B 02/8 p )4 p 2 a 2 . (Катушку тороидального соленоида можно представить как прижимаемый к внутренней опоре тонкий обруч). Так вот, выполнение условия grc = const , где r – переменный радиус кривизны катушки, позволяет создать так называемую безмоментную катушку , что резко повышает ее прочностные свойства. Одновременно условие g (R , z ) rc (R , z )= const определяет форму такой катушки, которая и имеет D - образный вид.

    Энергетическое время жизни

    Но кроме «инженерных» вытянутое вдоль вертикальной оси сечение плазмы имеет существенные физические преимущества для повышения параметров удерживаемой плазмы. С увеличением вытянутости k = b / a (см. рис.13.5) при том же большом радиусе возрастает ток плазмы и время ее удержания. https://pandia.ru/text/79/389/images/image046_4.jpg" align="left" width="225" height="263 src=">Запас устойчивости для

    плазмы некруглого сечения q (k ) » q (1+ k 2)/2 , что в соответствии с (13.1) при том же запасе устойчивости позволяет получить большие значения Ip . Скейлинг или закон подобия, полученный по результатам измерений на многих установках, для энергетического времени жизни t E дает следующую зависимость от тока и вытянутости плазмы t E µ Ip 0,9 k 0,8 . Таким образом, увеличение k с учетом q (k ) приводит к существенному возрастанию t E .

    Насколько увеличится значение бэта при переходе к вытянутому сечению можно оценить, если в знаменаR / a заменить на 2 p R / l , где l – длина периметра вытянутого сечения плазмы, которая примерно в (1+ k )/2 раз больше длины окружности с радиусом a .

    С целью достижения условий, необходимых для протекания . Плазма в токамаке удерживается не стенками камеры, которые не способны выдержать необходимую для термоядерных реакций температуру, а специально создаваемым комбинированным магнитным полем - тороидальным внешним и полоидальным полем тока, протекающего по плазменному шнуру. По сравнению с другими установками, использующими магнитное поле для удержания плазмы, использование электрического тока является главной особенностью токамака. Ток в плазме обеспечивает разогрев плазмы и удержание равновесия плазменного шнура в вакуумной камере. Этим токамак, в частности, отличается от стелларатора , являющегося одной из альтернативных схем удержания, в котором и тороидальное, и полоидальное поля создаются с помощью внешних магнитных катушек.

    Токамак-реактор на данный момент разрабатывается в рамках международного научного проекта ITER .

    История

    Предложение об использовании управляемого термоядерного синтеза для промышленных целей и конкретная схема с использованием термоизоляции высокотемпературной плазмы электрическим полем были впервые сформулированы советским физиком О. А. Лаврентьевым в работе середины 1950-го года. Эта работа послужила катализатором советских исследований по проблеме управляемого термоядерного синтеза. А. Д. Сахаров и И. Е. Тамм в 1951 году предложили модифицировать схему, предложив теоретическую основу термоядерного реактора, где плазма имела бы форму тора и удерживалась магнитным полем. Одновременно эта же идея была предложена американскими учёными, но «забыта» до 1970-х годов .

    В настоящее время токамак считается наиболее перспективным устройством для осуществления управляемого термоядерного синтеза .

    Устройство

    Токамак представляет собой тороидальную вакуумную камеру , на которую намотаны катушки для создания тороидального магнитного поля . Из вакуумной камеры сначала откачивают воздух, а затем заполняют её смесью дейтерия и трития . Затем с помощью индуктора в камере создают вихревое электрическое поле . Индуктор представляет собой первичную обмотку большого трансформатора , в котором камера токамака является вторичной обмоткой. Электрическое поле вызывает протекание тока и зажигание в камере плазмы .

    Протекающий через плазму ток выполняет две задачи:

    • нагревает плазму так же, как нагревал бы любой другой проводник (омический нагрев);
    • создаёт вокруг себя магнитное поле. Это магнитное поле называется полоидальным (то есть направленное вдоль линий, проходящих через полюсы сферической системы координат).

    Магнитное поле сжимает протекающий через плазму ток. В результате образуется конфигурация, в которой винтовые магнитные силовые линии «обвивают» плазменный шнур. При этом шаг при вращении в тороидальном направлении не совпадает с шагом в полоидальном направлении. Магнитные линии оказываются незамкнутыми, они бесконечно много раз закручиваются вокруг тора, образуя так называемые «магнитные поверхности» тороидальной формы.

    Наличие полоидального поля необходимо для стабильного удержания плазмы в такой системе. Так как оно создается за счёт увеличения тока в индукторе, а он не может быть бесконечным, время стабильного существования плазмы в классическом токамаке пока ограничено несколькими секундами. Для преодоления этого ограничения разработаны дополнительные способы поддержания тока. Для этого может быть использована инжекция в плазму ускоренных нейтральных атомов дейтерия или трития или микроволновое излучение .

    Кроме тороидальных катушек для управления плазменным шнуром необходимы дополнительные катушки полоидального поля . Они представляют собой кольцевые витки вокруг вертикальной оси камеры токамака.

    Одного только нагрева за счёт протекания тока недостаточно для нагрева плазмы до температуры, необходимой для осуществления термоядерной реакции. Для дополнительного нагрева используется микроволновое излучение на так называемых резонансных частотах (например, совпадающих с циклотронной частотой либо электронов , либо ионов) или инжекция быстрых нейтральных атомов.

    Токамаки и их характеристики

    Всего в мире было построено около 300 токамаков. Ниже перечислены наиболее крупные из них.

    СССР и Россия

    Казахстан

    • Казахстанский Токамак материаловедческий (КТМ) - это экспериментальная термоядерная установка для исследований и испытаний материалов в режимах энергетических нагрузок, близких к

    7 миллиардов тенге из бюджета страны, вложенных в строительство, и 6 лет вынужденного простоя в поисках источников финансирования. Проект казахстанского материаловедческого токамака был на грани закрытия. Однако ситуация радикально изменилась благодаря новым направлениям международного сотрудничества. Журналист Григорий Беденко побывал в Курчатове и специально для Infromburo.kz подготовил репортаж о перспективах исследований в области управляемого термоядерного синтеза.

    Немного истории

    В середине XX века самые развитые страны мира очень быстро овладели атомной энергией и научились использовать её как в военных оружейных программах, так и для получения больших объёмов тепловой и электрической энергии в мирных целях. Однако процесс управляемого распада атомного ядра оказался крайне небезопасным для окружающей среды. Аварии на атомных станциях и колоссальная проблема с утилизацией высокоактивных отходов лишили этот вид энергетики перспектив. Тогда же, в середине века, учёные выдвинули гипотезу о том, что альтернативой может стать управляемый термоядерный синтез. Специалисты предлагали повторить в земных условиях процессы, происходящие в недрах звёзд, и научиться не только их контролировать, но и получать энергию в необходимых для существования цивилизации количествах. Как известно, в основе термоядерного синтеза лежит принцип слияния лёгких ядер водорода в более тяжёлые с образованием гелия. При этом выделяется значительно больше энергии, чем при обратном процессе, когда ядра тяжёлых элементов делятся на более лёгкие с огромным энерговыделением и образованием изотопов различных элементов таблицы Менделеева. Вредных воздействий и опасных отходов производства в термоядерных реакторах нет.

    Схема международного экспериментального термоядерного реактора ITER

    Любопытно, что сам процесс термоядерного синтеза был достаточно легко воссоздан для оружейных программ, однако разработка мирных энергетических проектов оказалась практически нерешаемой задачей. Главное для водородной бомбы - это, собственно, запустить процесс синтеза, который происходит за наносекунды. Но для энергетического термоядерного реактора необходимы особые условия. Чтобы получить энергию, необходимо за определённый промежуток времени удержать в контролируемом состоянии высокотемпературную плазму - она разогрета от 10 до до 30 миллионов градусов Цельсия. При удержании такой плазмы создаются физические условия для слияния лёгких ядер дейтерия и трития в тяжёлые. Причём энергии должно выделиться больше, чем затраченной на разогрев и удержание плазмы. Считается, что однократный импульс с протеканием управляемого термоядерного синтеза с положительным коэффициентом энерговыделения должен продолжаться не менее 500 секунд. Но за такое время и при таких температурах ни один конструкционный материал перспективного реактора не выдержит. Он просто испарится. И вот над проблемой материаловедения ученые всего мира почти безрезультатно бьются уже более полувека.

    Плазма, полученная на казахстанском материаловедческом токамаке / Материалы предоставлены Институтом атомной энергии НЯЦ РК

    Материалы предоставлены Институтом атомной энергии НЯЦ РК

    Это сильно замедленное видео показывает образование плазмы в казахстанском токамаке (материалы предоставлены Институтом атомной энергии НЯЦ РК)

    Образование плазмы в КТМ

    Что такое токамак и стелларатор?

    Аббревиатура русская, как как первая установка была разработана в Советском Союзе. Токамак - это тороидальная камера с магнитными катушками. Тор представляет собой трёхмерную геометрическую фигуру (по форме напоминающую бублик, если простыми словами), а тороид - тонкий провод, намотанный на каркас в форме тора. Таким образом, высокотемпературная плазма в установке образуется и удерживается в форме тора. При этом главный принцип токамака сводится к тому, что плазма не взаимодействует со стенками камеры, а как бы висит в пространстве, удерживаемая сверхмощным магнитным полем. Схему термоизоляции плазмы и метод использования подобных установок в промышленных целях впервые предложил советский физик Олег Александрович Лаврентьев. Первый токамак был построен в 1954 году и долгое время существовал только в СССР. До настоящего времени в мире было построено где-то около двух сотен подобных устройств. Сейчас действующие тороидальные камеры для исследования управляемого термоядерного синтеза есть в России, США, Японии, Китае и в Евросоюзе. Самым крупным международным проектом в этой сфере является ITER (об этом чуть позже). Инициатором строительства материаловедческого токамака в Казахстане был руководитель российского Курчатовского института академик Евгений Павлович Велихов. С 1975 года он возглавлял советскую программу управляемых термоядерных реакторов. Идея построить установку на бывшем Семипалатинском ядерном полигоне появилась в 1998 году, когда Велихов встретился с президентом РК Нурсултаном Назарбаевым.

    Схема удержания плазмы в стеллараторе / Материалы предоставлены Институтом атомной энергии НЯЦ РК

    Стелларатор представляет собой альтернативный токамаку тип реактора для осуществления управляемого термоядерного синтеза. Изобретён американским астрофизиком Лайманом Спитцером в 1950 году. Название происходит от латинского слова stella (звезда), что указывает на аналогичность процессов внутри звёзд и в рукотворной установке. Главное отличие состоит в том, что магнитное поле для изоляции плазмы от внутренних стенок камеры полностью создаётся внешними катушками, что позволяет использовать его в непрерывном режиме. Плазма в стеллараторе образуется в форме “мятого бублика” и как бы закручивается. На сегодняшний день исследовательские стеллараторы есть в России, на Украине, в Германии и в Японии. Причём в Германии недавно запущен крупнейший в мире стелларатор Wendelstein 7-X (W7-X).

    Казахстанский токамак материаловедческий / Григорий Беденко

    Это всё исследовательские установки, - рассказывает руководитель научной группы проекта КТM Стелларатор отличается конфигурацией магнитного поля. В токамаке для удержания плазмы применяется так называемая тороидальная обмотка и полоидальная внешняя обмотка. А в стеллараторе наоборот - там накрученная по спирали обмотка, которая выполняет функции и тороидальной, и полоидальной. Токамак изначально является импульсной установкой, а стелларатор - более стационарная установка, то есть преимущество закрученной обмотки позволяет неограниченно долго удерживать плазму. Стеллараторы разрабатывались в одно время с токамаками, и в свое время токамаки вырвались вперёд по параметрам плазмы. Во всем мире началось “шествие” токамаков. Но тем не менее стеллараторы развиваются. Они есть в Японии, в Германии недавно построили - был введён в эксплуатацию Wendelstein 7-X (W7-X). В США есть стелларатор. Кроме того, есть огромное количество всевозможных исследовательских установок с отчасти магнитным удержанием плазмы - это ловушки различные. Также есть инерциальный термоядерный синтез, когда маленькая мишень нагревается под действием лазерного излучения. Это такой маленький термоядерный взрыв.

    Узлы и агрегаты верхней части установки / Григорий Беденко

    И всё же наиболее перспективным в качестве промышленного термоядерного реактора на сегодняшний день считается токамак.

    Технологическое здание, в котором находится КТМ / Григорий Беденко

    Токамак в Казахстане

    Казахстанская установка была построена к 2010 году на специально отведённой площадке в административной зоне бывшего Семипалатинского полигона - городе Курчатове. Комплекс состоит из нескольких технологических зданий, в которых размещены узлы и агрегаты токамака, а также мастерские, помещения для обработки данных, размещения персонала и т.п. Проект был разработан в России на базе Национального центра термоядерных исследований (Курчатовский институт). Вакуумную камеру, магнитные катушки и прочее проектировали и собирали в НИИ электрофизической аппаратуры им. Д.В. Евремова (НИИ ЭФА), автоматику - в Томском политехническом институте. Участниками проекта с российской стороны также стали Всероссийский институт токов (НИИ ТВЧ), ТРИНИТИ (Троицкий институт инновационных и термоядерных исследований). Генеральным проектировщиком от Казахстана выступило ТОО “Промэнергопроект”, а непосредственно монтировало комплекс УПК “Казэлектромонтаж”. После завершения всех работ КТМ был запущен и дал первую плазму. Затем финансирование проекта свернули, и токамак на долгие шесть лет превратился в дорогостоящий высокотехнологичный туристический объект.

    Монтаж оборудования дооснащения КТМ / Григорий Беденко

    Вторая жизнь КТМ

    Перезагрузка проекта произошла накануне ЭКСПО-2017 в Астане. Он отлично стыковался с концепцией Всемирной выставки, посвящённой энергии будущего. Девятого июня установка была вновь запущена в присутствии большого количества журналистов. На пуске присутствовали российские разработчики. Как было заявлено в ходе торжественного мероприятия, цель первого этапа физического пуска - отладка и проверка штатных систем КТМ. Также, по словам руководителя Национального ядерного центра РК Эрлана Батырбекова, на базе казахстанского токамака учёные из разных стран смогут проводить широкий спектр исследований, в том числе по модернизации существующих промышленных реакторов.

    Преобразователь переменного тока для КТМ имеет футуристический вид / Григорий Беденко

    Далее ситуация развивалась в ещё более благоприятном русле. В Астане в ходе Министерской конференции и VIII Международного форума по энергетике Казахстан получил официально приглашение стать ассоциированным членом Международной организации ITER. Международный экспериментальный термоядерный реактор (International Thermonuclear Experimental Reactor) создаётся группой стран с целью демонстрации возможности коммерческого использования термоядерной энергии, а также решения физических и технологических проблем в этой сфере. По сути, ITER - это огромный и очень сложный по конструкции токамак. В проекте принимают участие страны Евросоюза, Индия, Китай, Южная Корея, Россия, США, Япония и вот теперь уже и наша страна. От Казахстана исследованиями по теме займутся специалисты Национального ядерного центра, НИИ экспериментальной и теоретической физики КазНУ им. Аль-Фараби, Института ядерной физики, Ульбинского металлургического завода, КазНИПИЭнергопрома и Казэлектромаша. ITER будет создан во Франции, в 60 километрах от Марселя. В настоящее время стоимость проекта оценивается в 19 миллиардов евро. Запуск установки запланирован на 2025 год.

    Бауржан Чектыбаев / Григорий Беденко

    Бауржан Чектыбаев, руководитель научной группы проекта КТ M

    10 июня был заключён меморандум о совместном проведении исследований между ITER и КТМ. В рамках этого договора сейчас готовится проект по взаимодействию с Международной организацией ITER. Они заинтересованы в нашей установке. Сам по себе проект ITER тоже не простой, есть проблема материалов. В рамках проекта мы будем исследовать вольфрам и бериллий. Определённые узлы и детали ITER будут сделаны из этого материала. Мы их будем обкатывать. Вся первая стенка реактора ITER будет выложена плитками из вольфрама и бериллия. Сама вакуумная камера состоит из дивертора, куда стекают потоки плазмы, там наиболее напряжённое место - 20 МВт на квадратный метр. Там будет вольфрам. Остальная часть первой стенки будет выложена бериллием.

    КТМ - очень сложная с технологической точки зрения система / Григорий Беденко

    - Почему в ITER так заинтересовались нашим токамаком?

    Кроме материаловедения, задача нашей установки - исследования физики плазмы. КТМ уникален с точки зрения аспектного отношения. Есть такой параметр, один из основных для токамаков - отношение большого радиуса от оси к центру плазмы к малому, то есть от оси плазмы к её краям. У нас этот параметр равен двум. В том же ITER - 3,1. Все токамаки, которые более 3, являются классическими. Есть современное направление токамаков - это сферические токамаки, у которых аспектное отношение меньше 2 - полтора и даже ниже - крутые такие, почти сферические камеры. Наш токамак находится как бы в пограничном положении, между классическими и сферическими токамаками. Таких установок пока ещё не было, и здесь, думаю, будут вестись интересные исследования на тему поведения плазмы. Такие установки рассматриваются в качестве гибридных будущих реакторов, или объёмных источников нейтронов.

    Нижняя часть вакуумной камеры КТМ / Фото Григория Беденко

    - Насколько перспективно сотрудничество с ITER? Cпасёт ли оно проект?

    В 2010 году был пробный пуск на том оборудовании и с той готовностью, которая была на тот момент. Задача была - показать, что установка "дышит" - способна работать. В том же десятом году у нас закончилось финансирование. Затем было шесть лет простоя. Всё это время мы боролись за бюджет. Ранее он был утверждён в 2006-м, и пришлось его полностью пересматривать. У нас около 80% оборудования зарубежное, и в контексте известных событий в мировой финансовой системе объект стал значительно дороже, чем изначально планировалось. В 2016-м после корректировки бюджета проекта было выделено дополнительное финансирование. Установка уже обошлась казахстанскому бюджету в 7 млрд тенге. Это строительно-монтажные работы, изготовление вакуумной камеры и электромагнитной системы.

    Научным сотрудникам приходится быть мастерами на все руки / Григорий Беденко

    - Что сейчас происходит? В июне был пробный пуск.

    Сейчас создание КТМ находится на своей завершающей стадии. В настоящее время проводится монтаж и наладка основных и вспомогательных систем. У нас заключён договор с генеральным подрядчиком, выигравшим тендер. Работают две компании, одна занимается строительно-монтажными работами, вторая - пусконаладочными работами. “КазИнтелгрупп” занимается строительно-монтажными работами, "Гарант Качества XXI век" - пусконаладочными. В этом году планируется завершить строительство установки. Затем до конца года будет проведён физический пуск. В 2018 году установка будет введена в эксплуатацию, и начнутся полномасштабные эксперименты. В течение 3 лет мы планируем прийти к номинальным проектным параметрам, которые заложены в установку, и дальше уже исследовать материалы.

    Местами КТМ напоминает корабль пришельцев / Фото Григория Беденко

    - А как у вас обстоят деле с подбором сотрудников?

    Большинство молодых специалистов - это выпускники казахстанских вузов, из Усть-Каменогорска, Павлодара и Семея. Кое-кто заканчивал российские вузы, например, Томский политехнический университет. Вопрос с кадрами стоит остро. По проекту должно быть около 120 человек, работают человек 40. В следующем году, когда комплекс будет введён в эксплуатацию, тогда будет набор. Но найти специалистов в данном направлении - это отдельная непростая задача.

    Дмитрий Ольховик, начальник отдела систем автоматизации экспериментов КТМ

    Особенность КТМ в том, что в нём есть поворотно-диверторное устройство, то есть все исследуемые материалы можно вращать внутри камеры. Помимо этого есть и транспортно-шлюзовое устройство. Это даёт возможность перезаряжать исследуемые материалы без разгерметизации вакуумной камеры. На других установка есть определённые сложности: если разгерметизировали камеру, чтобы её опять подготовить к новым пускам, необходимы как минимум неделя-две. Мы можем за одну кампанию спокойно заменять исследуемые образцы, при этом не тратя времени на разгерметизацию. В этом экономическое преимущество установки.

    Некоторые виды нового оборудования ещё в заводской упаковке / Григорий Беденко

    - А как будут проводиться эксперименты?

    На таких установках в год проводятся две экспериментальные кампании. К примеру, проводим кампанию весной, затем летом анализируем полученные данные и планируем дальнейшие эксперименты. Вторая кампания проводится осенью. Сама кампания длится от двух до трёх месяцев. На пути к созданию энергетического термоядерного реактора есть две основные проблемы. Первая - отработка технологии получения и удержания плазмы, вторая - разработать материалы, те, которые обращены к плазме непосредственно, потому что плазма высокотемпературная. Летят громадные потоки энергии, воздействуют на материал. Материал в свою очередь разрушается, распыляется. И попадание этих частиц в плазму оказывает крайне негативный эффект. Плазма очень чувствительна к примесям. Они остужают плазму и в конце концов гасят её. Есть ещё тема нейтронного воздействия на конструкционные материалы. На нашем токамаке будут обкатываться материалы на предмет их теплостойкости. Имеются в виду их нераспыляемость и совместимость с плазмой. В качестве таких материалов будут изучаться вольфрам и бериллий. Будем их испытывать, смотреть, как они себя ведут в условиях высоких потоков плазмы, таких же, как и на ITER.


    В КТМ применяются токи огромной мощности / Григорий Беденко

    - Какие работы проводятся для дооснащения КТМ?

    Монтаж технологических систем для вакуумной системы, системы охлаждения. Это очень сложная электроустановка. Чтобы получить магнитное поле, нужно забрать очень много энергии из сети. Для преобразования энергии существует определённый комплекс. Начиная от системы импульсного электропитания - очень много используется несущих трансформаторов, и используется терристорный преобразовательный комплекс, то есть довольно-таки сложная система с точки зрения эксплуатации, управления, и система очень распределена. То есть все эти работы сейчас производятся, производится наладка источников питания.

    Работа весьма кропотливая / Григорий Беденко

    Работа с новым оборудованием КТМ

    Подобные установки требуют очень большого количества электроэнергии для работы. КТМ много будет потреблять?

    При работе в номинальном режиме забор электроэнергии из сети составит порядка 80-100 МВт. За один эксперимент. Есть ещё штатная система дополнительного нагрева, которая также будет закачивать энергию из сети.


    Система подачи питания на магнитные катушки / Григорий Беденко

    Известно, что в Казахстане у значительной части населения наблюдается радиофобия. Это такие социально-психологические последствия ядерных испытаний. Насколько безопасными будут ваши исследования?

    Считается, что управляемый термоядерный синтез - это альтернативная экологически безопасная энергетика. Аварий, подобных Чернобыльской, Фукусимской и т.п., здесь просто физически не может произойти. Самое серьёзное, что может произойти - это разгерметизация вакуумной камеры, где происходит удержание плазмы. При этом происходит гашение плазмы и утечка вот этих нескольких граммов термоядерного топлива, которое находилось в камере.

    Верхняя часть установки / Григорий Беденко

    И ещё несколько любопытных фактов про ITER, крупнейший в истории подобных исследований международный проект, на который наши специалисты возлагают большие надежды. Как уже было сказано выше, ITER - это международная организация, в которую входят более десятка стран: Россия, Франция, Япония, Китай, Индия, Евросоюз, Канада, США. Любопытно, что вклад каждой страны в проект производится в виде готовой продукции. К примеру, Россия выпускает часть криогенных обмоток на сверхпроводниках, энергетическое оборудование и т.п.

    Работы по настройке системы подачи питания на КТМ / Григорий Беденко

    ITER - это не энергетическая ещё установка, она не будет давать энергию. Это демонстрация технологии осуществимости получения плазмы с выходом энергии. После ITER, когда технологии будут отработаны, создадут демонстрационный реактор, который будет уже давать энергию. Это произойдёт где-то в 40-50-х годах XXI века. То есть спустя 100 лет после начала исследований на данную тему.

    Пультовая КТМ / Григорий Беденко

    В проекте ITER заложено около 500 секунд непрерывной работы. Реактор импульсный. В принципе, предусматривается до 1000 сек. - как пойдёт. Когда все технологии будут выбраны, утверждены материалы и конструкция, дальше будет создаваться DEMO. Уже решено, что этот реактор будет строиться в Японии.

    Узлы КТМ / Григорий Беденко

    По всей видимости, принцип действия энергетического термоядерного реактора будет следующим. Первый элемент, который будет принимать на себя тепловую энергию плазмы, внутри себя будет содержать каналы для теплообмена. Дальше всё, как на обычной электростанции - нагрев теплоносителя второго контура, раскрутка турбин и получение электрической энергии.

    Общий вид реакторного зала КТМ / Григорий Беденко

    Физический пуск ITER будет произведён в 2025 году. В эксплуатацию же его введут в 2028 году. По результатам работы в том числе рассматривается вариант создания гибридных реакторов - где нейтроны от термоядерного синтеза используются для расщепления ядерного топлива.

    Недавно в Московском физико-техническом институте состоялась российская презентация проекта ИТЭР, в рамках которого планируется создать термоядерный реактор, работающий по принципу токамака. Группа ученых из России рассказала о международном проекте и об участии российских физиков в создании этого объекта. «Лента.ру» посетила презентацию ИТЭР и поговорила с одним из участников проекта.

    ИТЭР (ITER, International Thermonuclear Experimental Reactor - Международный термоядерный экспериментальный реактор) - проект термоядерного реактора, позволяющий продемонстрировать и исследовать термоядерные технологии для их дальнейшего использования в мирных и коммерческих целях. Создатели проекта считают, что управляемый термоядерный синтез может стать энергетикой будущего и служить альтернативой современным газу, нефти и углю. Исследователи отмечают безопасность, экологичность и доступность технологии ИТЭР по сравнению с обычной энергетикой. По сложности проект сравним с Большим адронным коллайдером; установка реактора включает в себя более десяти миллионов конструктивных элементов.

    Об ИТЭР

    Для тороидальных магнитов токамака необходимо 80 тысяч километров сверхпроводящих нитей; общий их вес достигает 400 тонн. Сам реактор будет весить около 23 тысяч тонн. Для сравнения - вес Эйфелевой башни в Париже равен всего 7,3 тысячи тонн. Объем плазмы в токамаке будет достигать 840 кубических метров, тогда как, например, в крупнейшем действующем в Великобритании реакторе такого типа - JET - объем равен ста кубическим метрам.

    Высота токамака составит 73 метра, из которых 60 метров будут находиться над землей и 13 метров - под ней. Для сравнения, высота Спасской башни Московского Кремля равна 71 метру. Основная платформа реактора будет занимать площадь, равную 42 гектарам, что сопоставимо с площадью 60 футбольных полей. Температура в плазме токамака будет достигать 150 миллионов градусов Цельсия, что в десять раз выше температуры в центре Солнца.

    В строительстве ИТЭР во второй половине 2010 годов планируется задействовать одновременно до пяти тысяч человек - в их число войдут как рабочие и инженеры, так и административный персонал. Многие компоненты ИТЭР будут доставляться от порта у Средиземного моря по специально сооруженной дороге длиной около 104 километров. В частности, по ней будет перевезен самый тяжелый фрагмент установки, масса которого составит более 900 тонн, а длина - около десяти метров. Более 2,5 миллионов кубометров земли вывезут с места строительства установки ИТЭР.

    Общие затраты на проектные и строительные работы оцениваются в 13 миллиардов евро. Эти средства выделяются семью основными участниками проекта, представляющими интересы 35 стран. Для сравнения, совокупные расходы на строительство и обслуживание Большого адронного коллайдера почти в два раза меньше, а строительство и поддержание работоспособности Международной космической станции обходится почти в полтора раза дороже.

    Токамак

    Сегодня в мире существуют два перспективных проекта термоядерных реакторов: токамак (то роидальная ка мера с ма гнитными к атушками) и стелларатор. В обеих установках плазма удерживается магнитным полем, однако в токамаке она имеет форму тороидального шнура, по которому пропускается электрический ток, тогда как в стеллараторе магнитное поле наводится внешними катушками. В термоядерных реакторах происходят реакции синтеза тяжелых элементов из легких (гелия из изотопов водорода - дейтерия и трития), в отличие от обычных реакторов, где инициируются процессы распада тяжелых ядер на более легкие.

    Фото: НИЦ «Курчатовский институт»/ nrcki.ru

    Электрический ток в токамаке используется также и для начального разогрева плазмы до температуры около 30 миллионов градусов Цельсия; дальнейший разогрев производится специальными устройствами.

    Теоретическая схема токамака была предложена в 1951 советскими физиками Андреем Сахаровым и Игорем Таммом , и в 1954 году в СССР была построена первая установка. Однако, ученым не удавалось продолжительное время поддерживать плазму в стационарном режиме, и к середине 1960 годов в мире сложилось убеждение, что управляемый термоядерный синтез на основе токамака невозможен.

    Но уже через три года на установке Т-3 в Институте атомной энергии имени Курчатова под руководством Льва Арцимовича удалось нагреть плазму до температуры более пяти миллионов градусов Цельсия и ненадолго удержать ее; ученые из Великобритании, присутствовавшие на эксперименте, на своем оборудовании зафиксировали температуру около десяти миллионов градусов. После этого в мире начался настоящий бум токамаков, так что в мире было построено около 300 установок, самые крупные из которых находятся в Европе, Японии, США и России.

    Изображение: Rfassbind/ wikipedia.org

    Управление ИТЭР

    На чем основана уверенность в том, что ИТЭР заработает через 5-10 лет? На каких практических и теоретических разработках?

    С российской стороны заявленный график работ мы выполняем и не собираемся нарушать. К сожалению, мы видим некоторое запаздывание работ, выполняемых другими, в основном Европой; частично есть запаздывание у Америки и наблюдается тенденция к тому, что проект будет несколько задержан. Задержан, но не остановлен. Есть уверенность в том, что он заработает. Концепт самого проекта полностью теоретически и практически просчитан и надежен, поэтому я думаю, что он заработает. Даст ли он в полной мере заявленные результаты... поживем - увидим.

    Проект скорее носит исследовательский характер?

    Конечно. Заявленный результат не есть полученный результат. Если он будет получен в полной мере, я буду предельно счастлив.

    Какие новые технологии появились, появляются или будут появляться в проекте ИТЭР?

    Проект ИТЭР является не просто сверхсложным, но еще и сверхнапряженным проектом. Напряженным в плане энергонагрузки, условий эксплуатации определенных элементов, в том числе наших систем. Поэтому новые технологии просто обязаны рождаться в этом проекте.

    А есть пример?

    Космос. Например, наши алмазные детекторы. Мы обсуждали возможность применения наших алмазных детекторов на космических грузовиках, которые представляют собой ядерные машины, перевозящие некоторые объекты типа спутников или станций с орбиты на орбиту. Есть такой проект космического грузовика. Так как это аппарат с ядерным реактором на борту, то сложные условия эксплуатации требуют анализа и контроля, так что наши детекторы вполне могли бы это сделать. На данный момент тема создания такой диагностики пока не финансируется. Если она будет создана, то может быть применена, и тогда в нее не нужно будет вкладывать деньги на стадии разработки, а только на стадии освоения и внедрения.

    Какова доля современных российских разработок нулевых и девяностых годов в сравнении с советскими и западными разработками?

    Доля российского научного вклада в ИТЭР на фоне общемирового очень велика. Я не знаю ее точно, но она очень весома. Она явно не меньше российского процента финансового участия в проекте, потому что во многих других командах есть большое количество русских, которые уехали за границу работать в другие институты. В Японии и Америке, везде, мы с ними очень хорошо контактируем и работаем, кто-то из них представляет Европу, кто-то - Америку. Кроме того, там есть и свои научные школы. Поэтому, насчет того, сильнее мы или больше развиваем то, что делали раньше... Один из великих сказал, что «мы стоим на плечах титанов», поэтому та база, которая была наработана в советские времена, неоспоримо велика и без нее мы ничего бы не смогли. Но и в данный момент мы не стоим на месте, мы движемся.

    А чем занимается именно ваша группа в ИТЭР?

    У меня сектор в отделе. Отдел занимается разработкой нескольких диагностик, наш сектор занимается конкретно разработкой вертикальной нейтронной камеры, нейтронной диагностики ИТЭР и решает большой круг задач от проектирования до изготовления, а также проводит сопутствующие научно-исследовательские работы, связанные с разработкой, в частности, алмазных детекторов. Алмазный детектор - уникальный прибор, первоначально созданный именно в нашей лаборатории. Ранее использовавшийся на многих термоядерных установках, сейчас он применяется достаточно широко многими лабораториями от Америки до Японии; они, скажем так, пошли за нами следом, но мы продолжаем оставаться на высоте. Сейчас мы делаем алмазные детекторы и собираемся выйти на уровень их промышленного производства (мелкосерийного производства).

    В каких отраслях промышленности могут использоваться эти детекторы?

    В данном случае это термоядерные исследования, в дальнейшем мы предполагаем, что они будут востребованы в ядерной энергетике.

    Что именно делают детекторы, что они измеряют?

    Нейтроны. Более ценного продукта, чем нейтрон, не существует. Мы с вами также состоим из нейтронов.

    Какие характеристики нейтронов они измеряют?

    Спектральные. Во-первых, непосредственная задача, которая решается в ИТЭРе, это измерение энергетических спектров нейтронов. Кроме того, они мониторят количество и энергию нейтронов. Вторая, дополнительная задача, касается ядерной энергетики: у нас есть параллельные разработки, которые могут измерять и тепловые нейтроны, являющиеся основой ядерных реакторов. У нас эта задача второстепенная, но она также отрабатывается, то есть мы можем работать здесь и в тоже время делать наработки, которые могут быть вполне успешно применены в ядерной энергетике.

    Какими методами вы пользуетесь в своих исследованиях: теоретическими, практическими, компьютерным моделированием?

    Всеми: от сложной математики (методов математической физики) и математического моделирования до экспериментов. Все самые разные типы расчетов, которые мы проводим, подтверждаются и проверяются экспериментами, потому что у нас непосредственно экспериментальная лаборатория с несколькими работающими нейтронными генераторами, на которых мы проводим тестирование тех систем, которые сами же и разрабатываем.

    У вас в лаборатории есть действующий реактор?

    Не реактор, а нейтронный генератор. Нейтронный генератор, по сути, это минимодель тех термоядерных реакций, о которых идет речь. В нем идет все то же самое, только там процесс несколько иной. Он работает по принципу ускорителя - это пучок определенных ионов, ударяющий по мишени. То есть в случае плазмы мы имеем горячий объект, в котором каждый атом имеет большую энергию, а в нашем случае специально ускоренный ион ударяется по мишени, насыщенной подобными же ионами. Соответственно, происходит реакция. Скажем так, это один из способов, которым вы можете делать ту же самую термоядерную реакцию; единственное только, что доказано, что данный способ не обладает высоким КПД, то есть вы не получите положительный энерговыход, но саму реакцию вы получаете - мы непосредственно наблюдаем данную реакцию и частицы и все, что в ней идет.

Статьи по теме