Связь тригонометрии с реальной жизнью. Тригонометрия с нуля: основные понятия, история

(1561-1613), а сама наука ещё в глубокой древности использовалась для расчётов в астрономии, геодезии и архитектуре.

Тригонометрические вычисления применяются практически во всех областях геометрии , физики и инженерного дела . Большое значение имеет техника триангуляции , позволяющая измерять расстояния до недалёких звёзд в астрономии , между ориентирами в географии , контролировать системы навигации спутников. Также следует отметить применение тригонометрии в таких областях, как теория музыки , акустика , оптика , анализ финансовых рынков, электроника , теория вероятностей , статистика , биология , медицина (включая ультразвуковое исследование (УЗИ) и компьютерную томографию), фармацевтика , химия , теория чисел (и, как следствие, криптография), сейсмология , метеорология , океанология , картография , многие разделы физики , топография и геодезия , архитектура , фонетика , экономика , электронная техника , машиностроение , компьютерная графика , кристаллография .

В Школе СССР имела статус учебного предмета.

Определение тригонометрических функций

Первоначально тригонометрические функции были связаны с соотношениями сторон в прямоугольном треугольнике . Их единственным аргументом является угол (один из острых углов этого треугольника).

  • Синус - отношение противолежащего катета к гипотенузе .
  • Косинус - отношение прилежащего катета к гипотенузе.
  • Тангенс - отношение противолежащего катета к прилежащему.
  • Котангенс - отношение прилежащего катета к противолежащему.
  • Секанс - отношение гипотенузы к прилежащему катету.
  • Косеканс - отношение гипотенузы к противолежащему катету.

Данные определения позволяют вычислить значения функций для острых углов, то есть от 0° до 90° (от 0 до радиан). В XVIII веке Леонард Эйлер дал современные, более общие определения, расширив область определения этих функций на всю числовую ось . Рассмотрим в прямоугольной системе координат окружность единичного радиуса (см. рисунок) и отложим от горизонтальной оси угол (если величина угла положительна, то откладываем против часовой стрелки, иначе по часовой стрелке). Точку пересечения построенной стороны угла с окружностью обозначим A . Тогда:

Для острых углов новые определения совпадают с прежними.

Возможно также чисто аналитическое определение этих функций, которое не связано с геометрией и представляет каждую функцию её разложением в бесконечный ряд.

История

Древняя Греция

Древнегреческие математики в своих построениях, связанных с измерением дуг круга, использовали технику хорд. Перпендикуляр к хорде, опущенный из центра окружности, делит пополам дугу и опирающуюся на неё хорду. Половина поделенной пополам хорды - это синус половинного угла, и поэтому функция синус известна также как «половина хорды». Благодаря этой зависимости, значительное число тригонометрических тождеств и теорем, известных сегодня, были также известны древнегреческим математикам, но в эквивалентной хордовой форме.

Хотя в работах Евклида и Архимеда нет тригонометрии в строгом смысле этого слова, их теоремы представлены в геометрическом виде, эквивалентном специфическим тригонометрическим формулам. Теорема Архимеда для деления хорд эквивалентна формулам для синусов суммы и разности углов. Для компенсации отсутствия таблицы хорд математики времен Аристарха иногда использовали хорошо известную теорему, в современной записи - sin α/ sin β < α/β < tan α/ tan β, где 0° < β < α < 90°, совместно с другими теоремами.

Теорема Птолемея влечёт за собой эквивалентность четырёх формул суммы и разности для синуса и косинуса. Позднее Птолемей вывел формулу половинного угла. Птолемей использовал эти результаты для создания своих тригонометрических таблиц, хотя, возможно, эти таблицы были выведены из работ Гиппарха. Ни таблицы Гиппарха, ни Птолемея не сохранились до настоящего дня, хотя свидетельства других древних авторов снимают сомнения об их существовании.

Средневековая Индия

Другие источники сообщают, что именно замена хорд синусами стала главным достижением Средневековой Индии. Такая замена позволила вводить различные функции, связанные со сторонами и углами прямоугольного треугольника. Таким образом, в Индии было положено начало тригонометрии как учению о тригонометрических величинах.

Индийские учёные пользовались различными тригонометрическими соотношениями, в том числе и теми, которые в современной форме выражаются как

Индийцы также знали формулы для кратных углов , , где .

Тригонометрия необходима для астрономических расчётов, которые оформляются в виде таблиц. Первая таблица синусов имеется в «Сурья-сиддханте» и у Ариабхаты. Позднее учёные составили более подробные таблицы: например, Бхаскара приводит таблицу синусов через 1°.

Южноиндийские математики в 16 веке добивались больших успехов в области суммирования бесконечных числовых рядов. По-видимому, они занимались этими исследованиями, когда искали способы вычисления более точных значений числа π. Нилаканта словесно приводит правила разложения арктангенса в бесконечный степенной ряд. А в анонимном трактате «Каранападдхати» («Техника вычислений») даны правила разложения синуса и косинуса в бесконечные степенные ряды. Нужно сказать, что в Европе к подобным результатам подошли лишь в 17-18 вв. Так, ряды для синуса и косинуса вывел Исаак Ньютон около 1666 г., а ряд арктангенса был найден Дж. Грегори в 1671 г. и Г. В. Лейбницем в 1673 г.

В 8 в. учёные стран Ближнего и Среднего Востока познакомились с трудами индийских математиков и астрономов и перевели их на арабский язык. В середине 9 века среднеазиатский учёный аль-Хорезми написал сочинение «Об индийском счёте». После того как арабские трактаты были переведены на латынь, многие идеи индийских математиков стали достоянием европейской, а затем и мировой науки.

См. также

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Тригонометрия" в других словарях:

    Тригонометрия … Орфографический словарь-справочник

    - (греч., от tri, gonia угол, и metron мера). Часть математики, занимающаяся измерением треугольников. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ТРИГОНОМЕТРИЯ греч., от trigonon, треугольник, и metreo, меряю.… … Словарь иностранных слов русского языка

    Современная энциклопедия

    Тригонометрия - (от греческого trigonon треугольник и...метрия), раздел математики, в котором изучаются тригонометрические функции и их приложения к геометрии. Отдельные задачи тригонометрии решались астрономами Древней Греции (3 в. до нашей эры);… … Иллюстрированный энциклопедический словарь

    - (от греч. trigonon треугольник и...метрия) раздел математики, в котором изучаются тригонометрические функции и их приложения к геометрии … Большой Энциклопедический словарь

МБОУ Целинная СОШ

Доклад Тригонометрия в реальной жизни

Подготовила и провела

учитель математики

квалификационной категории

Ильина В. П.

п. Целинный март 2014г.

Оглавление.

1.Введение .

2.История создания тригонометрии:

    Ранние века.

    Древняя Греция.

    Средневековье.

    Новое время.

    Из истории развития сферической геометрии.

3.Тригонометрия и реальная жизнь:

    Применение тригонометрии в навигации.

    Тригонометрия в алгебре.

    Тригонометрия в физике.

    Тригонометрия в медицине и биологии.

    Тригонометрия в музыке.

    Тригонометрия в информатике

    Тригонометрия в строительстве и геодезии.

4. Заключение .

5. Список литературы.

Введение

Издавна в математике установилась такая практика, что при систематическом изучении математики нам – ученикам приходится встречаться с тригонометрией трижды. Соответственно её содержание представляется состоящим из трёх частей. Эти части при обучении отделены друг от друга по времени и не похожи друг на друга как по смыслу, вкладываемому в объяснения основных понятий, так и по развиваемому аппарату и по служебным функциям (приложениям).

И в самом деле, впервые тригонометрический материал мы встретили в 8 классе при изучении темы «Соотношения между сторонами и углами прямоугольного треугольника». Так мы узнали, что такое синус, косинус и тангенс, научились решать плоские треугольники.

Однако прошло некоторое время и в 9-м классе мы снова вернулись к тригонометрии. Но эта тригонометрия не похожа на ту, что изучали ранее. Её соотношения определяются теперь с помощью окружности (единичной полуокружности), а не прямоугольного треугольника. Хотя они по-прежнему определяются как функции углов, но эти углы уже произвольно велики.

Перейдя же в 10 класс, мы снова столкнулись с тригонометрией и увидели, что она стала ещё сложнее, ввелось понятие радианная мера угла, иначе выглядят и тригонометрические тождества, и постановка задач, и трактовка их решений. Вводятся графики тригонометрических функций. Наконец, появляются тригонометрические уравнения. И весь этот материал предстал перед нами уже как часть алгебры, а не как геометрия. И нам стало очень интересно изучить историю тригонометрии, её применение в повседневной жизни, потому что использование учителем математики исторических сведений не является обязательным при изложении материала урока. Однако, как указывает К. А. Малыгин «...экскурсы в историческое прошлое оживляют урок, дают разрядку умственному напряжению, поднимают интерес к изучаемому материалу и способствуют прочному его усвоению» . Тем более что материал по истории математики весьма обширен и интересен, так как развитие математики тесным образом связано с решением насущных задач, возникавших во все периоды существования цивилизации.

Узнав об исторических причинах возникновения тригонометрии, и изучив, как плоды деятельности великих ученых оказали влияние на развитие этой области математики и на решение конкретных задач, у нас, у школьников, повышается интерес к изучаемому предмету, и мы увидим его практическое значение.

Цель проекта - развитие интереса к изучению темы «Тригонометрия» в курсе алгебры и начала анализа через призму прикладного значения изучаемого материала; расширение графических представлений, содержащих тригонометрические функции; применение тригонометрии в таких науках, как физика, биология и т.п.

Связь тригонометрии с окружающим миром, значение тригонометрии в решении многих практических задач, графические возможности тригонометрических функций позволяют «материализовать» знания школьников. Это позволяет лучше понять жизненную необходимость знаний, приобретаемых при изучении тригонометрии, повышает интерес к изучению данной темы.

Задачи исследования:

1.Рассмотреть историю возникновения и развития тригонометрии.

2.Показать на конкретных примерах практические приложения тригонометрии в различных науках.

3.Раскрыть на конкретных примерах возможности использования тригонометрических функций, позволяющие «мало интересные» функции превращать в функции, графики которых имеют весьма оригинальный вид.

« Одно осталось ясно, что мир устроен грозно и прекрасно».

Н. Рубцов

Тригонометрия - это раздел математики, в котором изучаются зависимости между величинами углов и длинами сторон треугольников, а также алгебраические тождества тригонометрических функций. Сложно представить, но с этой наукой мы сталкиваемся не только на уроках математики, но и в нашей повседневной жизни. Мы могли не подозревать об этом, но тригонометрия встречается в таких науках, как физика, биология, не последнюю роль она играет и в медицине, и, что самое интересное, без нее не обошлось даже в музыке и архитектуре. Значительную роль в развитии навыков применения на практике теоретических знаний, полученных при изучении математики, играют задачи с практическим содержанием. Каждого изучающего математику, интересует, как и где применяются полученные знания. Ответ на этот вопрос и дает данная работа.

История создания тригонометрии

Ранние века

От вавилонской математики ведёт начало привычное нам измерение углов градусами, минутами и секундами (введение этих единиц в древнегреческую математику обычно приписывают , II век до н. э.).

Главным достижением этого периода стало соотношение катетов и гипотенузы в прямоугольном треугольнике, позже получившее имя .

Древняя Греция

Общее и логически связное изложение тригонометрических соотношений появилось в древнегреческой геометрии. Греческие математики ещё не выделяли тригонометрию как отдельную науку, для них она была частью астрономии.
Основным достижением античной тригонометрической теории стало решение в общем виде задачи «решения треугольников», то есть нахождения неизвестных элементов треугольника, исходя из трёх заданных его элементов (из которых хотя бы один является стороной).


Средневековье

В IV веке, после гибели античной науки, центр развития математики переместился в Индию. Они изменили некоторые концепции тригонометрии, приблизив их к современным: к примеру, они первыми ввели в использование косинус.
Первым специализированным трактатом по тригонометрии было сочинение среднеазиатского учёного (X-XI век) «Книга ключей науки астрономии» (995-996 годы). Целый курс тригонометрии содержал главный труд Аль-Бируни - «Канон Мас‘уда» (книга III). В дополнение к таблицам синусов (с шагом 15") Аль-Бируни дал таблицы тангенсов (с шагом 1°).

После того как арабские трактаты были в XII-XIII веках переведены на латынь, многие идеи индийских и персидских математиков стали достоянием европейской науки. По всей видимости, первое знакомство европейцев с тригонометрией состоялось благодаря зиджу , два перевода которого были выполнены в XII веке.

Первым европейским сочинением, целиком посвященным тригонометрии, часто называют «Четыре трактата о прямых и обращенных хордах» английского астронома (около 1320 г.). Тригонометрические таблицы, чаще переводные с арабского, но иногда и оригинальные, содержатся в сочинениях ряда других авторов XIV-XV веков. Тогда же тригонометрия заняла место среди университетских курсов.

Новое время

Слово «тригонометрия» впервые встречается (1505 г) в заглавии книги немецкого теолога и математика Питискуса.Происхождение этого слова греческое: треугольник, мера. Иными словами, тригонометрия-наука об измерении треугольников. Хотя название возникло сравнительно недавно, многие относимые сейчас к тригонометрии понятия и факты были известны уже две тысячи лет назад.

Длительную историю имеет понятие синуса. Фактически различные отношения отрезков треугольника и окружности(а по существу, и тригонометрические функции) встречаются уже в ӀӀӀ в. до н. э в работах великих математиков Древней Греции-Евклида, Архимеда, Аполлония Пергского. В римский период эти отношения уже достаточно систематично исследовались Менелаем(Ӏ в. до н. э), хотя и не приобрели специального названия. Современный минус угла, например изучался как произведение полухорд, на которую опирается центральный угол величиной, или как хорда удвоенной дуги.

В последующий период математика долгое время наиболее активно развивалась индийскими и арабскими учеными. В Ӏ V - V вв. появился, в частности, уже специальный термин в трудах по астрономии великого индийского ученого Ариабхаты(476-ок. 550), именем которого назван первый индийский спутник Земли.

Позднее привилось более краткое название джива. Арабскими математиками в Ι X в. слово джива(или джиба) было заменено на арабское слово джайб(выпуклость). При переводе арабских математических текстов в XΙΙ в. это слово было заменено латинским синус(sinus -изгиб, кривизна)

Слово косинус намного моложе. Косинус-это сокращение латинского выражения complement sinus , т.е «дополнительный синус» (или иначе «синус дополнительной дуги»; вспомните cos a = sin (90°- a )).

Имея дело с тригонометрическими функциями, мы существенно выходим за рамки задачи «измерения треугольников». По этому известный математик Ф. Клейн (1849-1925) предлагал учение о «тригонометрических» функциях называть иначе- гониометрией(угол). Однако это название не привилось.

Тангенсы возникли в связи с решением задачи об определении длины тени. Тангенс(а также котангенс, секанс и косеканс) введен в X в. арабским математиком Абу-л-Вафой, который составил и первые таблицы для нахождения тангенсов и котангенсов. Однако эти открытия долгое время оставались неизвестными европейским ученым, и тангенсы были заново открыты в XΙV в. сначала английским ученым Т. Бравердином, а позднее немецким математиком, астрономом Региомонтаном (1467 г). Название «тангенс», происходящее от латинского tanger (касаться), появилось в 1583 г. Tangens переводится как «касающийся» (вспомните: линия тангенсов - это касательная к единичной окружности)

Современные обозначения arcsin и arctg появляются в 1772 г в работах венского математика Шерфера и известного французского ученого Ж.Л.Лагранжа, хотя несколько ранее их уже рассматривал Я.Бернулли, который употреблял иную символику. Но общепринятыми эти символы стали лишь в конце XVΙΙΙ столетия. Приставка «арк» происходит от латинского arcus x , например -,это угол (а можно сказать, и дуга),синус которого равен x .

Длительное время тригонометрия развивалась как часть геометрии, т.е. факты, которые мы сейчас формулируем в терминах тригонометрических функций, формулировались и доказывались с помощью геометрических понятий и утверждений. Пожалуй,наибольшие стимулы к развитию тригонометрии возникали в связи с решением задач астрономии, что представляло большой практический интерес(например, для решения задач определения местонахождения судна, предсказаний затмений и т,д)

Астрономов интересовали соотношения между сторонами и углами сферических треугольников, составленных из больших кругов, лежащих на сфере. И надо заметить, что математики древности удачно справлялись с задачами, существенно более трудными, нежели задачи на решении плоских треугольников.

Во всяком случае в геометрической форме многие известные нам формулы тригонометрии открывались и переоткрывались древнегреческими, индийскими, арабскими математиками(правда, формулы разности тригонометрических функций стали известны только в XVΙ Ӏ в.- их вывел английский математик Непер для упрощения вычислений с тригонометрическими функциями. А первый рисунок синусоиды появился в 1634 г.)

Принципиальное значение имело составление К.Птолемеем первой таблицы синусов (долгое время она называлась таблицей хорд): появилось практическое средство решения ряда прикладных задач, и в первую очередь задач астрономии.

Имея дело с готовыми таблицами, или пользуясь калькулятором, мы часто не задумываемся о том, что было время, когда таблицы еще не были изобретены. Для того чтобы составить их, требовалось выполнить не только большой объем вычислений, но и придумать способ составления таблиц. Таблицы Птолемея точны до пяти десятичных знаков включительно.

Современный вид тригонометрии придал крупнейший математик XV ΙӀΙ столетия Л.Эйлер(1707-1783), швейцарец по происхождению, долгие годы работавший в России и являвшийся членом Петербургской Академии наук. Именно Эйлер первый ввел известные определения тригонометрических функций, стал рассматривать функции произвольного угла, получил формулы приведения. Все это малая доля того, что за долгую жизнь успел сделать Эйлер в математике: он оставил свыше 800 работ,доказал многие ставшие классическими теоремы, относящиеся к самым разным областям математики. Но если вы пытаетесь оперировать с тригонометрическими функциями в геометрической форме, т.е так, как это делали многие поколения математиков до Эйлера, то сумеете оценить заслуги Эйлера в систематизации тригонометрии. После Эйлера тригонометрия приобрела новую форму исчисления: различные факты стали доказывать путем формального применения формул тригонометрии, доказательства стали намного компактнее, проще.

Из истории развития сферической геометрии .

Широко известно, что евклидова геометрия является одной из наиболее древних наук.: уже в III веке до н.э. появился классический труд Евклида – «Начала». Менее известно, что сферическая геометрия лишь немного моложе. Её первая систематическая изложение относится к I - II векам. В книге «Сферика», написанной греческим математиком Менелаем (I в.), изучались свойства сферических треугольников; доказывалась, в частности, что сумма углов сферического треугольника больше 180 градусов. Большой шаг вперед сделал другой греческий математик Клавдий Птолемей (II в.). По существу он первый составил таблицы тригонометрических функций, ввел стереографическую проекцию.

Так же как и геометрия Евклида, сферическая геометрия возникла при решении задач практического характера, и в первую очередь задач астрономии. Эти задачи были необходимы, например, путешественникам и мореплавателям, которые ориентировались по звездам. А поскольку при астрономических наблюдениях удобно считать, что и Солнце и Луна, и звезды движутся по изображаемой «небесной сфере», то естественно, что для изучения их движения потребовались знания о геометрии сферы. Не случайно поэтому, что самая известная работа Птолемея называлась « Великое математическое построение астрономии в 13 книгах».

Важнейший период истории сферической тригонометрии связан с деятельностью ученых Ближнего Востока. Индийские ученые успешно решали задачи сферической тригонометрии. Однако метод, описанный Птолемеем и основанный на теореме Менелая полного четырехугольника, у них не применялся. И в сферической тригонометрии они пользовались проективными методами, которые соответствовали методам из «Аналеммы» Птолемея. В результате ими был получен набор определенных вычислительных правил, позволявших решить практически любую задачу сферической астрономии. С их помощью такая задача сводилась в конечном счете к сравнению между собой подобных плоских прямоугольных треугольников. При решений нередко применялись теория квадратных уравнений и метод последовательных приближений. Примером астрономической задачи, которую решали индийские ученые с помощью разработанных им правил, служит задачам, рассматриваемая в сочинении «Панга сиддхантика» Варахамихиры (V - VI ). Она состоит нахождении высоты Солнца, если известно широта места, склонения Солнца и его часовой угол. В результате решения этой задачи после ряда построений устанавливается соотношение, которое равносильно современной теореме косинусов для сферического треугольника. Однако и это соотношение, и другое,эквивалентное теореме синусов, не были обобщены как правила, применимые к любому сферическому треугольнику.

Среди первых восточных ученных, которые обратились к обсуждению теореме Менелая, нужно назвать братьев Бану Мусса –Мухаммеда, Хасана и Ахмада, сыновей Муссы ибн Шакира, работавшего в Багдаде и занимавшегося математикой, астрономией и механикой. Но наиболее ранним из сохранившихся сочинений о теоремы Менелая является «Трактат о фигуре секущих» их ученика Сабита ибн Корры (836-901)

Трактат Сабита ибн Корры дошел до нас в арабском оригинале,. И в латинском переводе XII в. Этот перевод Герандо Кремонским (1114-1187), получил широкое распространение в Средневековой Европе.

История тригонометрии, как науки о соотношениях между углами и сторонами треугольника и других геометрических фигур, охватывает более двух тысячелетий. Большинство таких соотношений нельзя выразить с помощью обычных алгебраических операций, и поэтому понадобилось ввести особые тригонометрические функции, первоначально оформлявшиеся в виде числовых таблиц.
Историки полагают, что тригонометрию создали древние астрономы, немного позднее её стали использовать в архитектуре. Со временем область применения тригонометрии постоянно расширялась, в наши дни она включает практически все естественные науки, технику и ряд других областей деятельности.

Прикладные тригонометрические задачи отличаются большим разнообразием - например, могут быть заданы измеримые на практике результаты действий над перечисленными величинами (к примеру, сумма углов или отношение длин сторон).

Параллельно с развитием тригонометрии плоскости греки, под влиянием астрономии, далеко продвинули сферическую тригонометрию. В «Началах» Евклида на эту тему имеется только теорема об отношении объёмов шаров разного диаметра, но потребности астрономии и картографии вызвали быстрое развитие сферической тригонометрии и смежных с ней областей - системы небесных координат, теории картографических проекций, технологии астрономических приборов.

курсов.

Тригонометрия и реальная жизнь

Тригонометрические функции нашли применение в математическом анализе, физике, информатике, геодезии, медицине, музыке, геофизике, навигации.

Применение тригонометрии в навигации

Навигация (это слово происходит от латинского navigatio – плыву на судне) – одна из наиболее древних наук. Простейшие задачи навигации, такие, например, как определение кратчайшего маршрута, выбор направления движения, встали перед самыми первыми мореплавателями. В настоящее время эти же и другие задачи приходится решать не только морякам, но и лётчикам, и космонавтам. Некоторые понятия и задачи навигации рассмотрим поподробнее.

Задача. Известны географические координаты – широта и долгота пунктов А и В земной поверхности: , и, . Требуется найти кратчайшее расстояние между пунктами А и В вдоль земной поверхности (радиус Земли считается известным: R = 6371 км)

Решение. Напомним сначала, что широтой пункта М земной поверхности называется величина угла, образованного радиусом ОМ, где О – центр Земли, с плоскостью экватора: ≤ , причем севру от экватора широта считается положительной, а к югу – отрицательной (рисунок 1)

Долгота пункта М есть величина двугранного угла между плоскостями СОМ и СОН, где С – Северный полюс Земли, а Н – точка, отвечающая гринвичской обсерватории: ≤ (к востоку от гринвичского меридиана долгота считается положительной, к западу – отрицательной).

Как уже известно, кратчайшее расстояние между пунктами А и В земной поверхности- это длина меньшей из дуг большой окружности, соединяющая А и В (такую дугу называют ортодромией – в переводе с греческого означает «прямой бег»). Поэтому наша задача сводится к определению длины стороны АВ сферического треугольника АВС (С – северный полюс).

Применяя стандартное обозначение для элементов треугольника АВС и соответствующего трехгранного угла ОАВС, из условия задачи находим: α = = - , β = (рис.2).

Угол С также не трудно выразить через координаты точек А и В. По определению ≤ , поэтому либо угол С = , если ≤ , либо - , если. Зная = с помощью теоремы косинусов: = + (-). Зная и, следовательно угол, находим искомое расстояние: =.

Тригонометрия в навигации 2.

Для прокладки курса корабля на карте, выполненной в проекции Герхарда Меркатора (1569г.), необходимо было определять широту. При плавании по Средиземному морю в лоциях до XVII в. широта не указывалась. Впервые применил тригонометрические расчеты в навигации Эдмонд Гюнтер(1623).

Тригонометрия помогает рассчитывать влияние ветра на полет самолета. Треугольник скоростей – это треугольник, образованный вектором воздушной скорости (V ), вектором ветра(W ), вектором путевой скорости (V п ). ПУ – путевой угол, УВ – угол ветра, КУВ – курсовой угол ветра.

Зависимость между элементами навигационного треугольника скоростей имеет вид:

V п = V cos УС + W cos УВ; sin УС = * sin УВ, tg УВ =

Навигационный треугольник скоростей решается с помощью счетных устройств, на навигационной линейке и приближенно в уме.

Тригонометрия в алгебре.

Вот пример решения сложного уравнения с помощью тригонометрической подстановки.

Дано уравнение

Пусть , получим

;

откуда: или

с учётом ограничений получим:

Тригонометрия в физике

Везде, где приходится иметь дело с периодическими процессами и колебаниями – будь то акустика, оптика или качание маятника, мы имеем дело с тригонометрическими функциями. Формулы колебаний:

где A – амплитуда колебания, - угловая частота колебания, -начальная фаза колебания

Фаза колебания.

При погружении предметов в воду они не меняют ни формы, ни размеров. Весь секрет - оптический эффект который заставляет наше зрение воспринимать объект по-иному. Простейшие тригонометрические формулы и значения синуса угла падения и преломления луча дают возможность высчитать постоянный коэффициент преломления при переходе светового луча из среды в среду. Например, радуга возникает из-за того, что солнечный свет испытывает преломление в капельках воды, взвешенных в воздухе по закону преломления:

sin α / sin β = n 1 / n 2

где:

n 1 - показатель преломления первой среды
n 2 - показатель преломления второй среды

α -угол падения, β -угол преломления света.

Проникновение в верхние слои атмосферы планет заряженных частиц солнечного ветра определяется взаимодействием магнитного поля планеты с солнечным ветром.

Сила, действующая на движущуюся в магнитном поле заряженную частицу, называется силой Лоренца. Она пропорциональна заряду частицы и векторному произведению поля и скорости движения частицы.

В качестве практического примера рассмотрим физическую задачу, которая решается с применением тригонометрии.

Задача. На наклонной плоскости, составляющей с горизонтом угол 24,5 о , находится тело массой 90 кг. Найдите, с какой силой это тело давит на наклонную плоскость (т.е какое давление оказывает тело на эту плоскость).

Решение:

Обозначив оси Х и У, начнем строить проекции сил на оси, для начала воспользовавшись данной формулой:

ma = N + mg , затем смотрим на рисунок,

Х : ma = 0 + mg sin24,5 0

Y: 0 = N – mg cos24,5 0

N = mg cos 24,5 0

подставляем массу, находим, что сила равна 819 Н.

Ответ: 819 Н

Тригонометрия в медицине и биологии

Одно из фундаментальных свойств живой природы - это цикличность большинства происходящих в ней процессов.

Биологические ритмы, биоритмы – это более или менее регулярные изменения характера и интенсивности биологических процессов.

Основной земной ритм – суточный.

Модель биоритмов можно построить с помощью тригонометрических функций.

Для построения модели биоритмов необходимо ввести дату рождения человека, дату отсчета (день, месяц, год) и длительность прогноза (количество дней).

Даже некоторые участки головного мозга называются синусами.

Стенки синусов образованы твёрдой мозговой оболочкой, выстланной эндотелием. Просвет синусов зияет, клапаны и мышечная оболочка, в отличие от других вен, отсутствуют. В полости синусов располагаются покрытые эндотелием волокнистые перегородки. Из синусов кровь поступает во внутренние ярёмные вены, помимо этого существует связь синусов с венами наружной поверхности черепа посредством резервных венозных выпускников.

Движение рыб в воде происходит по закону синуса или косинуса, если зафиксировать точку на хвосте, а потом рассмотреть траекторию движения.

При плавании тело рыбы принимает форму кривой, которая напоминает график

функции y = tgx .

Тригонометрия в музыке

Мы слушаем музыку в формате mp3.

Звуковой сигнал – это волна, вот её «график».

Как можно увидеть – это хотя и очень сложная, но синусоида, подчиняющаяся законам тригонометрии.

Во МХАТе весной 2003 года состоялась презентация альбома «Тригонометрия» группы «Ночные снайперы», солистка Диана Арбенина. Содержание альбома раскрывает первоначальное значение слова «тригонометрия» - измерение Земли.

Тригонометрия в информатике

Тригонометрические функции можно использовать для точных расчётов.

С помощью тригонометрических функций можно приблизить любую

(в некотором смысле "хорошую") функцию, разложив её в ряд Фурье:

a 0 + a 1 cos x + b 1 sin x + a 2 cos 2x + b 2 sin 2x + a 3 cos 3x + b 3 sin 3x + ...

Подбирая подходящим образом числа a 0 , a 1 , b 1 , a 2 , b 2 , ..., можно в виде такой (бесконечной) суммы представлять почти любые функции в компьютере с требуемой точностью.

Тригонометрические функции оказываются полезными при работе с графической информацией. Необходимо промоделировать (описать в компьютере) вращение некоторого объекта вокруг некоторой оси. Возникает поворот на некоторый угол. Чтобы определить при этом координаты точек придётся умножать на синусы и косинусы.

Джастин Уиндел, программист и дизайнер из Google Grafika Lab , опубликовал демо, показывающее примеры использования тригонометрических функций для создания динамической анимации.

Тригонометрия в строительстве и геодезии

Длины сторон и величины углов произвольного треугольника на плоскости связаны между собой определенными соотношениями, важнейшие из которых называют теоремами косинусов и синусов.

2 ab

= =

В этих формулах а, b , c – длины сторон треугольника АВС, лежащих соответственно против углов А, В, С. Эти формулы позволяют по трем элементам треугольника – длинам сторон и углам – восстановить остальные три элемента. Они применяются при решении практических задач, например в геодезии.

Вся "классическая" геодезия основана на тригонометрии. Поскольку фактически с древних времён геодезисты занимаются тем, что "решают" треугольники.

Процесс строительства зданий, дорог, мостов и других сооружений начинается с изыскательских и проектных работ. Все измерения на стройке проводятся с помощью геодезических инструментов, таких как теодолит и тригонометрический нивелир. При тригонометрическом нивелировании определяют разность высот между несколькими точками земной поверхности.

Заключение

    Тригонометрия была вызвана к жизни необходимостью производить измерения углов, но со временем развилась и в науку о тригонометрических функциях.

    Тригонометрия тесно связана с физикой, встречается в природе, музыке, архитектуре, медицине и технике.

    Тригонометрия нашла отражение в нашей жизни, и сферы, в которых она играет важную роль, будут расширяться, поэтому знание её законов необходимо каждому.

    Связь математики с окружающим миром позволяет «материализовать» знания школьников. Это помогает нам лучше понять жизненную необходимость знаний, приобретаемых в школе.

    Под математической задачей с практическим содержанием (задачей прикладного характера) мы понимаем задачу, фабула которой раскрывает приложения математики в смежных учебных дисциплинах, технике, в быту.

    Рассказ о исторических причинах возникновения тригонометрии, ее развитии и практическом применении побуждает у нас – школьников интерес к изучаемому предмету, формирует наше мировоззрение и повышает общую культуру.

Данная работа будет полезна для учащихся старших классов, которые ещё не увидели всю красоту тригонометрии и не знакомы с областями её применения в окружающей жизни.

Список литературы:

    Тригонометрия в астрономии:

    Потребность в решении треугольников раньше всего обнаружилась в астрономии; поэтому, в течение долгого времени тригонометрия развивалась и изучалась как один из разделов астрономии.

    Составленные Гиппархом таблицы положений Солнца и Луны позволили предвычислять моменты наступления затмений (с ошибкой 1—2 ч). Гиппарх впервые стал использовать в астрономии методы сферической тригонометрии. Он повысил точность наблюдений, применив для наведения на светило крест нитей в угломерных инструментах — секстантах и квадрантах. Ученый составил огромный по тем временам каталог положений 850 звезд, разделив их по блеску на 6 степеней (звездных величин). Гиппарх ввел географические координаты — широту и долготу, и его можно считать основателем математической географии. (ок. 190 до н. э. — ок. 120 до н. э.)


    Полное решение задачи об определении всех элементов плоского или сферического треугольников по трем данным элементам, важные разложения sin пх и cos пх по степеням cos х и sinx. Знание формулы синусов и косинусов кратных дуг дало возможность Виету решить уравнение 45-й степени, предложенное математиком А. Рооменом; Виет показал, что решение этого уравнения сводится к разделению угла на 45 равных частей и что существуют 23 положительных корня этого уравнения. Виет решил задачу Аполлония с помощью линейки и циркуля.
    Решение сферических треугольников- одна из задач астрономии Вычислять стороны и углы любого сферического треугольника по трем подходящим образом заданным сторонам или углам позволяют следующие теоремы: (теорема синусов) (теорема косинусов для углов) (теорема косинусов для сторон).

    Тригонометрия в физике:

    виды колебательных явлений.

    Гармоническое колебание — явление периодического изменения какой-либо величины, при котором зависимость от аргумента имеет характер функции синуса или косинуса. Например, гармонически колеблется величина, изменяющаяся во времени следующим образом:

    Где х — значение изменяющейся величины, t — время, А — амплитуда колебаний, ω — циклическая частота колебаний, — полная фаза колебаний, r — начальная фаза колебаний.

    Механические колебания . Механическими колебаниями

    Тригонометрия в природе.

    Мы часто задаем вопрос

  • Одно из фундаментальных свойств
  • - это более или менее регулярные изменения характера и интенсивности биологических процессов.
  • Основной земной ритм - суточный.

Тригонометрия в биологии

  • Тригонометрия играет важную роль в медицине. С ее помощью иранские ученые открыли формулу сердца - комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии.
  • диатоническая гамма 2:3:5

Тригонометрия в архитектуре

  • Страховая корпорация Swiss Re в Лондоне
  1. Интерпретация

Мы привели лишь малую часть того, где можно встретить тригонометрические функции.. Мы выяснили

Мы доказали, что тригонометрия тесно связана с физикой, встречается в природе, медицине. Можно приводить бесконечно много примеров периодических процессов живой и неживой природы. Все периодические процессы можно описать с помощью тригонометрических функций и изобразить на графиках

Мы думаем, что тригонометрия нашла отражение в нашей жизни, и сферы,

в которых она играет важную роль, будут расширяться.

  • Выяснили , что тригонометрия была вызвана к жизни необходимостью производить измерения углов, но со временем развилась и в науку о тригонометрических функциях.
  • Доказали
  • Думаем

Просмотр содержимого документа
«Данилова Т.В.-сценарий»

МКОУ «Ненецкая общеобразовательная средняя школа – интернат им. А.П.Пырерки»

Учебный проект

" "

Данилова Татьяна Владимировна

Учитель математики

    Обоснование актуальности проекта.

Тригонометрия - это раздел математики, изучающий тригонометрические функции. Сложно представить, но с этой наукой мы сталкиваемся не только на уроках математики, но и в нашей повседневной жизни. Вы могли не подозревать об этом, но тригонометрия встречается в таких науках, как физика, биология, не последнюю роль она играет и в медицине, и, что самое интересное, без нее не обошлось даже в музыке и архитектуре.
Слово тригонометрия впервые появляется в 1505 году в заглавии книги немецкого математика Питискуса.
Тригонометрия – слово греческое, и в буквальном переводе означает измерение треугольников (trigonan – треугольник, metreo - измеряю).
Возникновение тригонометрии было тесно связано с землемерием, астрономией и строительным делом.…

Школьник в 14-15 лет не всегда знает, куда пойдет учиться и где будет работать.
Для некоторых профессий ее знание необходимо, т.к. позволяет измерять расстояния до недалёких звёзд в астрономии, между ориентирами в географии, контролировать системы навигации спутников. Принципы тригонометрии, используются и в таких областях, как теория музыки, акустика, оптика, анализ финансовых рынков, электроника, теория вероятностей, статистика, биология, медицина (включая ультразвуковое исследование (УЗИ) и компьютерную томографию), фармацевтика, химия, теория чисел (и, как следствие, криптография), сейсмология, метеорология, океанология, картография, многие разделы физики, топография и геодезия, архитектура, фонетика, экономика, электронная техника, машиностроение, компьютерная графика, кристаллография.

    Определение предмета исследования

3. Цели проекта.

    Проблемный вопрос
    1. Какие понятия тригонометрии чаще всего используются в реальной жизни?
    2. Какую роль играет тригонометрия в астрономии, физике, биологии и медицине?
    3. Как связаны архитектура, музыка и тригонометрия?

    Гипотеза

    Проверка гипотезы

Тригонометрия (от греч. trigonon – треугольник, metro – метрия) –

История тригонометрии:

Древние люди вычисляли высоту дерева, сравнивая длину его тени с длиной тени от шеста, высота которого была известна. По звездам вычисляли местонахождение корабля в море.

Следующий шаг в развитии тригонометрии был сделан индийцами в период с V по XII в.

Сам термин косинус появился значительно позднее в работах европейских ученых впервые в конце XVI в.из так называемого «синуса дополнения», т.е. синуса угла, дополняющего данный угол до 90°. «Синус дополнения» или (по латыни) sinus complementi стали сокращенно записывать как sinus co или co -sinus .

В XVII – XIX вв. тригонометрия становится одной из глав математического анализа.

Она находит большое применение в механике, физике и технике, особенно при изучении колебательных движений и других периодических процессов.

Жан Фурье доказал, что всякое периодическое движение может быть представлено (с любой степенью точности) в виде суммы простых гармонических колебаний.

в систему математического анализа.

Где применяется тригонометрия

Тригонометрические вычисления применяются практически во всех сферах жизнедеятельности людей. Следует отметить применение в таких областях как: астрономия, физика, природа, биология, музыка, медицина и многие другие.

Тригонометрия в астрономии:

Потребность в решении треугольников раньше всего обнаружилась в астрономии; поэтому, в течение долгого времени тригонометрия развивалась и изучалась как один из разделов астрономии.

Потребность в решении треугольников раньше всего обнаружилась в астрономии; поэтому, в течение долгого времени тригонометрия развивалась и изучалась как один из разделов астрономии.

Достижения Виета в тригонометрии
Полное решение задачи об определении всех элементов плоского или сферического треугольников по трем данным элементам, важные разложения sin пх и cos пх по степеням cos х и sinx. Знание формулы синусов и косинусов кратных дуг дало возможность Виету решить уравнение 45-й степени, предложенное математиком А. Рооменом; Виет показал, что решение этого уравнения сводится к разделению угла на 45 равных частей и что существуют 23 положительных корня этого уравнения. Виет решил задачу Аполлония с помощью линейки и циркуля.
Решение сферических треугольников- одна из задач астрономии Вычислять стороны и углы любого сферического треугольника по трем подходящим образом заданным сторонам или углам позволяют следующие теоремы: (теорема синусов) (теорема косинусов для углов) (теорема косинусов для сторон).

Тригонометрия в физике:

В окружающем нас мире приходится сталкиваться с периодическими процессами, которые повторяются через одинаковые промежутки времени. Эти процессы называются колебательными. Колебательные явления различной физической природы подчиняются общим закономерностям и описываются одинаковыми уравнениями. Существуют разные виды колебательных явлений.

Гармоническое колебание - явление периодического изменения какой-либо величины, при котором зависимость от аргумента имеет характер функции синуса или косинуса. Например, гармонически колеблется величина, изменяющаяся во времени следующим образом:

Где х - значение изменяющейся величины, t - время, А - амплитуда колебаний, ω - циклическая частота колебаний, - полная фаза колебаний, r - начальная фаза колебаний.

Обобщенное гармоническое колебание в дифференциальном виде x’’ + ω²x = 0.

Механические колебания . Механическими колебаниями называют движения тел, повторяющиеся точно через одинаковые промежутки времени. Графическое изображение этой функции дает наглядное представление о протекании колебательного процесса во времени. Примерами простых механических колебательных систем могут служить груз на пружине или математический маятник.

Тригонометрия в природе.

Мы часто задаем вопрос «Почему мы иногда видим то, чего нет на самом деле?» . Для исследования предложены следующие вопросы: «Как возникает радуга? Северное сияние?», «Что такое оптические иллюзии?» ,«Как тригонометрия может помочь найти ответы на эти вопросы?».

Впервые теория радуги была дана в 1637 году Рене Декартом. Он объяснил радугу, как явление, связанное с отражением и преломлением света в дождевых каплях.

Северное сияние Проникновение в верхние слои атмосферы планет заряженных частиц солнечного ветра определяется взаимодействием магнитного поля планеты с солнечным ветром.

Сила, действующая на движущуюся в магнитном поле заряженную частицу называется силой Лоренца. Она пропорциональна заряду частицы и векторному произведению поля и скорости движения частицы.

    Американские ученые утверждают, что мозг оценивает расстояние до объектов, измеряя угол между плоскостью земли и плоскостью зрения.

    К тому же в биологии используется такое понятие как синус сонный, синус каротидный и венозный или пещеристый синус.

    Тригонометрия играет важную роль в медицине. С ее помощью иранские ученые открыли формулу сердца - комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии.

    Одно из фундаментальных свойств живой природы - это цикличность большинства происходящих в ней процессов.

    Биологические ритмы, биоритмы

    Основной земной ритм – суточный.

    Модель биоритмов можно построить с помощью тригонометрических функций.

Тригонометрия в биологии

Какие биологические процессы связаны с тригонометрией?

    Тригонометрия играет важную роль в медицине. С ее помощью иранские ученые открыли формулу сердца - комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии.

    Биологические ритмы, биоритмы связаны с тригонометрией

    Модель биоритмов можно построить с помощью графиков тригонометрических функций. Для этого необходимо ввести дату рождения человека (день, месяц, год) и длительность прогноза

Движение рыб в воде происходит по закону синуса или косинуса, если зафиксировать точку на хвосте, а потом рассмотреть траекторию движения.

Возникновение музыкальной гармонии

    Согласно дошедшим из древности преданиям, первыми, кто попытался сделать это, были Пифагор и его ученики.

    Частоты, соответствующие одной и той же ноте в первой, второй и т.д. октавах, относятся, как 1:2:4:8…

    диатоническая гамма 2:3:5

Тригонометрия в архитектуре

    Детская школа Гауди в Барселоне

    Страховая корпорация Swiss Re в Лондоне

    Феликс Кандела Ресторан в Лос-Манантиалесе

    Интерпретация

Мы привели лишь малую часть того, где можно встретить тригонометрические функции.. Мы выяснили, что тригонометрия была вызвана к жизни необходимостью производить измерения углов, но со временем развилась и в науку о тригонометрических функциях.

Мы доказали, что тригонометрия тесно связана с физикой, встречается в природе, медицине. Можно приводить бесконечно много примеров периодических процессов живой и неживой природы. Все периодические процессы можно описать с помощью тригонометрических функций и изобразить на графиках

Мы думаем, что тригонометрия нашла отражение в нашей жизни, и сферы,

в которых она играет важную роль, будут расширяться.

    Выяснили , что тригонометрия была вызвана к жизни необходимостью производить измерения углов, но со временем развилась и в науку о тригонометрических функциях.

    Доказали , что тригонометрия тесно связана с физикой, встречается в природе, музыке, астрономии и медицине.

    Думаем , что тригонометрия нашла отражение в нашей жизни, и сферы, в которых она играет важную роль, будут расширяться.

7. Литература.

    Программа Maple6, реализующий изображение графиков

    «Википедия»

    Учеба.ru

    Math.ru «библиотека»

Просмотр содержимого презентации
«Данилова Т.В.»

" Тригонометрия в окружающем нас мире и жизни человека "



Цели исследования:

Связь тригонометрии с реальной жизнью.


Проблемный вопрос 1. Какие понятия тригонометрии чаще всего используются в реальной жизни? 2. Какую роль играет тригонометрия в астрономии, физике, биологии и медицине? 3. Как связаны архитектура, музыка и тригонометрия?


Гипотеза

Большинство физических явлений природы, физиологический процессов, закономерностей в музыке и искусстве можно описать с помощью тригонометрии и тригонометрических функций.


Что такое тригонометрия???

Тригонометрия (от греч. trigonon – треугольник, metro – метрия) – микрораздел математики, в котором изучаются зависимости между величинами углов и длинами сторон треугольников, а также алгебраические тождества тригонометрических функций.



История тригонометрии

Истоки тригонометрии берут начало в древнем Египте, Вавилонии и долине Инда более 3000 лет назад.

Слово тригонометрия впервые встречается в 1505 году в заглавии книги немецкого математика Питискуса.

Впервые способы решения треугольников, основанные на зависимостях между сторонами и углами треугольника, были найдены древнегреческими астрономами Гиппархом и Птолемеем.

Древние люди вычисляли высоту дерева, сравнивая длину его тени с длиной тени от шеста, высота которого была известна.

По звездам вычисляли местонахождение корабля в море.


Следующий шаг в развитии тригонометрии был сделан индийцами в период с V по XII в.

В отличие от греков инд ийцы стали рассматривать и употреблять в вычислениях уже не целую хорду ММ соответствующего центрального угла, а только ее половину МР, т. е. синуса - половины центрального угла.

Сам термин косинус появился значительно позднее в работах европейских ученых впервые в конце XVI в.из так называемого « синуса дополнения » , т.е. синуса угла, дополняющего данный угол до 90 . « Синус дополнения » или (по латыни) sinus complementi стали сокращенно записывать как sinus co или co-sinus.

Наряду с синусом индийцы ввели в тригонометрию косинус , точнее говоря, стали употреблять в своих вычислениях линию косинуса. Им были известны также соотношения cos =sin(90 - ) и sin 2 +cos 2 =r 2 , а также формулы для синуса суммы и разности двух углов.


В XVII – XIX вв. тригонометрия становится

одной из глав математического анализа.

Она находит большое применение в механике,

физике и технике, особенно при изучении

колебательных движений и других

периодических процессов.

О свойствах периодичности тригонометрических функций знал еще Виет, первые математические исследования которого относились к тригонометрии.

Доказал, что всякое периодическое

движение может быть

представлено (с любой степенью

точности) в виде суммы простых

гармонических колебаний.


Основоположник аналитической

теории

тригонометрических функций .

Леонард Эйлер

Во «Введении в анализ бесконечных» (1748 г)

трактует синус, косинус и т.д. не как

тригонометрические линии, обязательно

связанные с окружностью, а как

тригонометрические функции, которые он

рассматривал как отношения сторон

прямоугольного треугольника, как числовые

величины.

Исключил из своих формул

R – целый синус, принимая

R = 1, и упростил таким

образом записи и вычисления.

Разрабатывает учение

о тригонометрических функциях

любого аргумента.


В XIX веке продолжил

развитие теории

тригонометрических

функций.

Н.И.Лобачевский

« Геометрические рассмотрения,- пишет Лобачевский,- необходимы до тех пор в начале тригонометрии, покуда они не послужат к открытию отличительного свойства тригонометрических функций… Отсюда делается тригонометрия совершенно независимой от геометрии и имеет все достоинства анализа».


Стадии развития тригонометрии:

  • Тригонометрия была вызвана к жизни необходимостью производить измерения углов.
  • Первыми шагами тригонометрии было установление связей между величиной угла и отношением специально построенных отрезков прямых. Результат - возможность решать плоские треугольники.
  • Необходимость табулировать значения вводимых тригонометрических функций.
  • Тригонометрические функции превращались в самостоятельные объекты исследований.
  • В XVIII в. тригонометрические функции были включены

в систему математического анализа.


Где применяется тригонометрия

Тригонометрические вычисления применяются практически во всех сферах жизнедеятельности людей. Следует отметить применение в таких областях как: астрономия, физика, природа, биология, музыка, медицина и многие другие.


Тригонометрия в астрономии

Потребность в решении треугольников раньше всего обнаружилась в астрономии; поэтому, в течение долгого времени тригонометрия развивалась и изучалась как один из разделов астрономии.

Значительных высот достигла тригонометрия и у индийских средневековых астрономов.

Главным достижением индийских астрономов стала замена хорд

синусами, что позволило вводить различные функции, связанные

со сторонами и углами прямоугольного треугольника.

Таким образом, в Индии было положено начало тригонометрии

как учению о тригонометрических величинах.


Составленные Гиппархом таблицы положений Солнца и Луны позволили предвычислять моменты наступления затмений (с ошибкой 1-2 ч). Гиппарх впервые стал использовать в астрономии методы сферической тригонометрии. Он повысил точность наблюдений, применив для наведения на светило крест нитей в угломерных инструментах - секстантах и квадрантах. Ученый составил огромный по тем временам каталог положений 850 звезд, разделив их по блеску на 6 степеней (звездных величин). Гиппарх ввел географические координаты - широту и долготу, и его можно считать основателем математической географии. (ок. 190 до н. э. - ок. 120 до н. э.)

Гиппарх



Тригонометрия в физике

В окружающем нас мире приходится сталкиваться с периодическими процессами, которые повторяются через одинаковые промежутки времени. Эти процессы называются колебательными. Колебательные явления различной физической природы подчиняются общим закономерностям и описываются одинаковыми уравнениями. Существуют разные виды колебательных явлений, например:

Механические колебания

Гармонические колебания


Гармонические колебания

Гармоническое колебание - явление периодического изменения какой-либо величины, при котором зависимость от аргумента имеет характер функции синуса или косинуса. Например, гармонически колеблется величина, изменяющаяся во времени следующим образом:

или

Где х - значение изменяющейся величины, t - время, А - амплитуда колебаний, ω - циклическая частота колебаний, - полная фаза колебаний, r - начальная фаза колебаний.

Обобщенное гармоническое колебание в дифференциальном виде x’’ + ω²x = 0.


Механические колебания

Механическими колебаниями называют движения тел, повторяющиеся точно через одинаковые промежутки времени. Графическое изображение этой функции дает наглядное представление о протекании колебательного процесса во времени.

Примерами простых механических колебательных систем могут служить груз на пружине или математический маятник.


Математический маятник

На рисунке изображены колебания маятника, он движется по кривой, называемой косинусом.


Траектория пули и проекции векторов на оси X и Y

Из рисунка видно, что проекции векторов на оси Х и У соответственно равны

υ x = υ o cos α

υ y = υ o sin α


Тригонометрия в природе

Мы часто задаем вопрос «Почему мы иногда видим то, чего нет на самом деле?» . Для исследования предложены следующие вопросы: «Как возникает радуга? Северное сияние?», «Что такое оптические иллюзии?» ,«Как тригонометрия может помочь найти ответы на эти вопросы?».


Оптические иллюзии

естественные

искусственные

смешанные


Теория радуги

Радуга возникает из-за того, что солнечный свет испытывает преломление в капельках воды, взвешенных в воздухе по закону преломления:

Впервые теория радуги была дана в 1637 году Рене Декартом. Он объяснил радугу, как явление, связанное с отражением и преломлением света в дождевых каплях.

sin α / sin β = n 1 / n 2

где n 1 =1, n 2 ≈1,33 – соответственно показатели преломления воздуха и воды, α – угол падения, а β – угол преломления света.


Северное сияние

Проникновение в верхние слои атмосферы планет заряженных частиц солнечного ветра определяется взаимодействием магнитного поля планеты с солнечным ветром.

Сила, действующая на движущуюся в магнитном поле заряженную частицу называется силой Лоренца. Она пропорциональна заряду частицы и векторному произведению поля и скорости движения частицы.


  • Американские ученые утверждают, что мозг оценивает расстояние до объектов, измеряя угол между плоскостью земли и плоскостью зрения.
  • К тому же в биологии используется такое понятие как синус сонный, синус каротидный и венозный или пещеристый синус.
  • Тригонометрия играет важную роль в медицине. С ее помощью иранские ученые открыли формулу сердца - комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии.

  • Одно из фундаментальных свойств живой природы - это цикличность большинства происходящих в ней процессов.
  • Биологические ритмы, биоритмы – это более или менее регулярные изменения характера и интенсивности биологических процессов.
  • Основной земной ритм – суточный.
  • Модель биоритмов можно построить с помощью тригонометрических функций.

Тригонометрия в биологии

Какие биологические процессы связаны с тригонометрией?

  • Тригонометрия играет важную роль в медицине. С ее помощью иранские ученые открыли формулу сердца - комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии.
  • Биологические ритмы, биоритмы связаны с тригонометрией.

  • Модель биоритмов можно построить с помощью графиков тригонометрических функций.
  • Для этого необходимо ввести дату рождения человека (день, месяц, год) и длительность прогноза.

Тригонометрия в биологии

Движение рыб в воде происходит по закону синуса или косинуса, если зафиксировать точку на хвосте, а потом рассмотреть траекторию движения.

При плавании тело рыбы принимает форму кривой, которая напоминает график функции y=tgx.



Возникновение музыкальной гармонии

  • Согласно дошедшим из древности преданиям, первыми, кто попытался сделать это, были Пифагор и его ученики.
  • Частоты, соответствующие

одной и той же ноте в первой, второй и т.д. октавах, относятся, как 1:2:4:8…

  • диатоническая гамма 2:3:5

У музыки есть своя геометрия

Тетраэдр из различных типов аккордов четырех звуков:

синий – малые интервалы;

более теплые тона - более «разряженные» звуки аккорда; красная сфера- наиболее гармоничный аккорд с равными интервалами между нотами.


cos 2 С + sin 2 С = 1

АС – расстояние от верха статуи до глаз человека,

АН – высота статуи,

sin С - синус угла падения взгляда.


Тригонометрия в архитектуре

Детская школа Гауди в Барселоне


Страховая корпорация Swiss Re в Лондоне

y = f (λ)cos θ

z = f (λ)sin θ


Феликс Кандела Ресторан в Лос-Манантиалесе


  • Выяснили , что тригонометрия была вызвана к жизни необходимостью производить измерения углов, но со временем развилась и в науку о тригонометрических функциях.
  • Доказали , что тригонометрия тесно связана с физикой, встречается в природе, музыке, астрономии и медицине.
  • Думаем , что тригонометрия нашла отражение в нашей жизни, и сферы, в которых она играет важную роль, будут расширяться.

Тригонометрия прошла длинный путь развития. И теперь, мы можем с уверенностью сказать, что тригонометрия не зависит от других наук, а другие науки зависят от тригонометрии.


  • Маслова Т.Н. «Справочник школьника по математике»
  • Программа Maple6, реализующий изображение графиков
  • «Википедия»
  • Учеба.ru
  • Math.ru «библиотека»
  • История математики с Древнейших времен до начала XIX столетия в 3-х томах// под ред. А. П. Юшкевича. Москва, 1970г. – том 1-3 Э. Т. Бэлл Творцы математики.
  • Предшественники современной математики// под ред. С. Н. Ниро. Москва,1983г. А. Н. Тихонов, Д. П. Костомаров.
  • Рассказы о прикладной математике//Москва, 1979г. А. В. Волошинов. Математика и искусство// Москва, 1992г. Газета Математика. Приложение к газете от 1.09.98г.

Применение тригонометрии в физике и ее задачах

Практическое применение тригонометрических уравнений в реальной жизни

Существует множество областей, в которых применяются тригонометрия. Например, метод триангуляции используется в астрономии для измерения расстояния до ближайших звезд, в географии для измерения расстояний между объектами, а также в спутниковые навигационных системах. Синус и косинус имеют фундаментальное значение для теории периодических функций, например при описании звуковых и световых волн.

Тригонометрия используются в астрономии (особенно для расчётов положения небесных объектов, когда требуется сферическая тригонометрия), в морской и воздушной навигации, в теории музыки, в акустике, в оптике, в анализе финансовых рынков, в электронике, в теории вероятностей, в статистике, в биологии, в медицинской визуализации (например, компьютерная томография и ультразвук), в аптеках, в химии, в теории чисел, в метеорологии, в океанографии, во многих физических науках, в межевании и геодезии, в архитектуре, в фонетике, в экономике, в электротехнике, в машиностроении, в гражданском строительстве, в компьютерной графике, в картографии, в кристаллографии, в разработке игр и многих других областях.


В окружающем нас мире приходится сталкиваться с периодическими процессами, которые повторяются через одинаковые промежутки времени. Эти процессы называются колебательными. Колебательные явления различной физической природы подчиняются общим закономерностям и описываются одинаковыми уравнениями. Существуют разные виды колебательных явлений.

Гармоническое колебание - явление периодического изменения какой-либо величины, при котором зависимость от аргумента имеет характер функции синуса или косинуса. Например, гармонически колеблется величина, изменяющаяся во времени следующим образом:

Где х - значение изменяющейся величины, t - время, А - амплитуда колебаний, ω - циклическая частота колебаний, - полная фаза колебаний, r - начальная фаза колебаний.

Обобщенное гармоническое колебание в дифференциальном виде x’’ + ω²x = 0.

Камень брошен на склоне горы под углом α к ее поверхности. Определите дальность полета камня, если начальная скорость камня равна v 0 , угол наклона горы к горизонту β. Сопротивление воздуха не учитывать.

Решение. Сложное движение камня по параболе нужно представить как результат наложения двух прямолинейных движений: одного вдоль поверхности Земли, другого - по нормали к ней.

Выберем прямоугольную систему координат с началом отсчета в точке бросания камня так, чтобы оси OX и OY совпали с указанными направлениями, и найдем составляющие векторов начальной скорости v 0 и ускорения свободного падения g по осям. Проекции этих составляющих на оси OX и OY равны соответственно:
v 0 cosα v 0 ; -g sinβ -g cosβ



После этого сложное движение можно рассматривать как два более простых: равнозамедленное движение вдоль поверхности Земли с ускорением g sinβ и равнопеременное движение, перпендикулярное склону горы, с ускорением g cosβ .

Составляем уравнения движения для каждого направления с учетом того, что за время t всего движения перемещение камня по нормали к поверхности (по оси OY ) оказалось равным нулю, а вдоль поверхности (по оси OX ) - равным s:

По условию задачи v 0 ,α и β нам заданы, поэтому в составленных уравнениях имеется две неизвестные величины s и t1.

Из первого уравнения определяем время полета камня:

Подставляя это выражение во второе уравнение, находим:

S= v 0 cosα∙ =
=

Анализируя решение приведенной задачи, можно сделать вывод, что математика имеет аппарат и использование его при реализации меж предметной связи физики и математики ведет к осознанию единства мира и интеграции научных знаний.

Математика выступает как своеобразный язык, необходимый для кодирования содержательной физической информации.

Использование меж предметной связи физики и математики ведет к сравниванию этих двух наук и позволяет усиливать качественную теоретическую и практическую подготовку обучаемых.


Потребность в решении треугольников раньше всего обнаружилась в астрономии; поэтому, в течение долгого времени тригонометрия развивалась и изучалась как один из разделов астрономии.

Составленные Гиппархом таблицы положений Солнца и Луны позволили предвычислять моменты наступления затмений (с ошибкой 1-2 ч). Гиппарх впервые стал использовать в астрономии методы сферической тригонометрии. Он повысил точность наблюдений, применив для наведения на светило крест нитей в угломерных инструментах - секстантах и квадрантах. Ученый составил огромный по тем временам каталог положений 850 звезд, разделив их по блеску на 6 степеней (звездных величин). Гиппарх ввел географические координаты - широту и долготу, и его можно считать основателем математической географии. (ок. 190 до н. э. - ок. 120 до н. э.)

«Юность, творчество, поиск»

МБОУ «Тирянская СОШ»

Научно-исследовательская работа по теме

«Тригонометрия и тригонометрические уравнения»

Работу выполнил

ученик 10 класса

Субботин Антон.

Руководитель

учитель математики

Кезикова Л.Н.

Нетризово

План.


  1. Введение. Стр. 3.

  2. История возникновения тригонометрии. Стр. 4.

  3. Тригонометрические уравнения. Стр. 7.
3.1. Простейшие тригонометрические уравнения. Стр. 7.

3.2. Схема решения тригонометрических уравнений. Стр. 9.

3.3. Введение вспомогательного аргумента. Стр. 11.

3.4. Универсальная тригонометрическая подстановка. Стр. 12.

3.5. Решение тригонометрических уравнений с помощью

формул. Стр. 14.

3.6. Решение тригонометрических уравнений с помощью

разложения на множители. Стр. 15.

3.7.Решение однородных тригонометрических уравнений. Стр. 16.

3.8. Решение нестандартных тригонометрических

уравнений. Стр. 17.


  1. Практические применения тригонометрии. Стр. 19.
4.1.Применение тригонометрии в искусстве и архитектуре.Стр. 19.

4.2. Тригонометрия в биологии. Стр. 21.

4.3.Тригонометрия в медицине. Стр. 22.


  1. Заключение. Стр. 23.

  2. Список литературы. Стр. 24.

  1. В в едение
В школьной программе по математике есть очень важный раздел «тригонометрия». «Тригонометрические уравнения» - одна из самых сложных тем в школьном курсе математики. Тригонометрические уравнения возникают при решении задач по планиметрии, стереометрии, астрономии, физики и в других областях. Тригонометрические уравнения и неравенства из года в год встречаются среди заданий централизованного тестирования. Я решил писать данную работу, чтобы узнать побольше об истории появления тригонометрии, способах решения тригонометрических уравнений и рассмотреть применение тригономентрии в современной жизни.

Объект исследования: тригонометрия и тригонометрические уравнения.

Предмет исследования: практическое применение тригонометрии.

Цель исследования: установить картину возникновения понятий тригонометрии и выявить примеры применения.


  1. История возникновения тригонометрии
Слово «тригонометрия» впервые встречается в 1505 г. в заглавии книги немецкого теолога и математика Бартоломеуса Питискуса (Bartholomäus Pitiscus, 1561-1613), а сама наука ещё в глубокой древности использовалась для расчётов в астрономии, геодезии и архитектуре.

Происхождение этого слова греческое: τρίγωνον - треугольник, μετρεω - мера. Иными словами, тригонометрия - наука об измерениях треугольников. Возникновение тригонометрии связано с землемерением, астрономией и строительным делом. Хотя название возникло сравнительно недавно, многие относимые сейчас к тригонометрии понятия и факты были известны уже 2000 лет назад

Длительную историю имеет понятие синуса. Фактически различные отношения отрезков треугольника и окружности (а по существу, и тригонометрические функции) встречаются уже в 3 в. до н.э. в работах великих математиков Древней Греции - Евклида, Архимеда, Аполлония Пергского. В римский период эти отношения уже достаточно систематично исследовались Менелаем (I в. н. э.), хотя и не приобрели специального названия. Современный синус угла α, например, изучается как полухорда, на которую опирается центральный угол величиной α, или как хорда удвоенной дуги.

В последующий период математика долгое время наиболее активно развивалась индийскими и арабскими учёными. В 4-5 веках появился, в частности, уже специальный термин в трудах по астрономии великого индийского учёного Ариабхаты (476-ок. 550), именем которого назван первый индийский спутник Земли. Отрезок он назвал ардхаджива (ардха-половина, джива-тетива лука, которую напоминает хорда). Позднее привилось более краткое название джива. Арабскими математиками в IXв. слово джива (или джиба) было заменено на арабское словоджайб (выпуклость). При переводе арабских математических текстов в XIIв. это слово было заменено латинскимсинус (sinus-изгиб, кривизна).

Слово косинус намного моложе. Косинус - это сокращение латинского выражения complementlysinus, т.е. «дополнительный синус» (или иначе «синус дополнительной дуги»; вспомните cosα= sin(90° - a)).

Впервые способы решения треугольников, основанные на зависимостях между сторонами и углами треугольника, были найдены древнегреческими астрономами Гиппархом (2 в. до н. э.) и Клавдием Птолемеем (2 в. н. э.). Позднее зависимости между отношениями сторон треугольника и его углами начали называть тригонометрическими функциями.

Значительный вклад в развитие тригонометрии внесли арабские ученые Аль-Батани (850-929) и Абу-ль-Вафа, Мухамед-бен Мухамед (940-998), который составил таблицы синусов и тангенсов через 10’ с точностью до 1/604. Теорему синусов уже знали индийский ученый Бхаскара (р. 1114, год смерти неизвестен) и азербайджанский астроном и математик Насиреддин Туси Мухамед (1201-1274). Кроме того, Насиреддин Туси в своей работе «Трактат о полном четырехстороннике» изложил плоскую и сферическую тригонометрию как самостоятельную дисциплину.

Тангенсы возникли в связи с решением задачи об определении длины тени. Тангенс (а также котангенс) введен в X веке арабским математиком Абу-ль-Вафой, который составил и первые таблицы для нахождения тангенсов и котангенсов. Однако эти открытия долгое время оставались неизвестными европейским ученым, и тангенсы были заново открыты лишь в XIV веке немецким математиком, астрономом Регимонтаном (1467 г.). Он доказал теорему тангенсов. Региомонтан составил также подробные тригонометрические таблицы; благодаря его трудам плоская и сферическая тригонометрия стала самостоятельной дисциплиной и в Европе.

Название «тангенс», происходящее от латинского tanger (касаться), появилось в 1583 г. Tangens переводится как «касающийся» (линия тангенсов – касательная к единичной окружности).

Дальнейшее развитие тригонометрия получила в трудах выдающихся астрономов Николая Коперника (1473-1543) , Тихо Браге (1546-1601) и Иогана Кеплера (1571-1630), а также в работах математика Франсуа Виета (1540-1603), который полностью решил задачу об определениях всех элементов плоского или сферического треугольника по трем данным.

Долгое время тригонометрия носила чисто геометрический характер, т. е. факты, которые мы сейчас формулируем в терминах тригонометрических функций, формулировались и доказывались с помощью геометрических понятий и утверждений. Такою она была еще в средние века, хотя иногда в ней использовались и аналитические методы, особенно после появления логарифмов. Пожалуй, наибольшие стимулы к развитию тригонометрии возникали в связи с решением задач астрономии, что представляло большой практический интерес (например, для решения задач определения местонахождения судна, предсказания затемнения и т. д.). Астрономов интересовали соотношения между сторонами и углами сферических треугольников. И надо заметить, что математики древности удачно справлялись с поставленными задачами.

Начиная с XVII в., тригонометрические функции начали применять к решению уравнений, задач механики, оптики, электричества, радиотехники, для описания колебательных процессов, распространения волн, движения различных механизмов, для изучения переменного электрического тока и т. д. Поэтому тригонометрические функции всесторонне и глубоко исследовались, и приобрели важное значение для всей математики.


  1. Тригонометрические уравнения

    1. Простейшие тригонометрические уравнения
Простейшие тригонометрические уравнения - это уравнения вида , где - одна из тригонометрических функций: , , tgx . Элементарные тригонометрические уравнения имеют бесконечно много корней. Например, уравнению удовлетворяют следующие значения: , , , и т. д. Общая формула по которой находятся все корни уравнения , где , такова:

Здесь может принимать любые целые значения, каждому из них соответствует определенный корень уравнения; в этой формуле (равно как и в других формулах, по которым решаются элементарные тригонометрические уравнения) называют параметром . Записывают обычно , подчеркивая тем самым, что параметр принимать любые целые значения.

Решения уравнения , где , находятся по формуле

Особо отметим некоторые частные случаи простейших тригонометрических уравнений, когда решение может быть записано без применения общих формул:

    1. Схема решения тригонометрических уравнений

Основная схема, которой мы будем руководствоваться при решении тригонометрических уравнений следующая:

решение заданного уравнения сводится к решению элементарных уравнений. Средства решения: преобразования, разложения на множители, замена неизвестных. Ведущий принцип: не терять корней. Это означает, что при переходе к следующему уравнению (уравнениям) мы не опасаемся появления лишних (посторонних) корней, а заботимся лишь о том, чтобы каждое последующее уравнение нашей "цепочки" (или совокупность уравнений в случае ветвления) являлось следствием предыдущего. Одним из возможных методов отбора корней является проверка. Сразу заметим, что в случае тригонометрических уравнений трудности, связанные с отбором корней, с проверкой, как правило, резко возрастают по сравнению с алгебраическими уравнениями. Ведь проверять приходится серии, состоящие из бесконечного числа членов.

Особо следует сказать о замене неизвестных при решении тригонометрических уравнений. В большинстве случаев после нужной замены получается алгебраическое уравнение. Более того, не так уж и редки уравнения, которые, хотя и являются тригонометрическими по внешнему виду, по существу таковыми не являются, поскольку уже после первого шага - замены переменных - превращаются в алгебраические, а возращение к тригонометрии происходит лишь на этапе решения элементарных тригонометрических уравнений.

Еще раз напомним: замену неизвестного следует делать при первой возможности, получившееся после замены уравнение необходимо решить до конца, включая этап отбора корней, а уж затем возвратится к первоначальному неизвестному.

Одна из особенностей тригонометрических уравнений заключается в том, что ответ во многих случаях может быть записан различными способами. Даже для решения уравнения ответ может быть записан следующим образом:

1) в виде двух серий: , , ;

2) в стандартной форме представляющей собой объединение указанных выше серий: , ;

3) поскольку , то ответ можно записать в виде , . (В дальнейшем наличие параметра , , или в записи ответа автоматически означает, что этот параметр принимает всевозможные целочисленные значения. (Исключения будут оговариваться.)

Очевидно, что тремя перечисленными случаями не исчерпываются все возможности для записи ответа рассматриваемого уравнения (их бесконечно много).

Обычно ответ записывается на основании пункта 2. Полезно запомнить следующую рекомендацию: если на решении уравнения работа не заканчивается, необходимо еще провести исследование, отбор корней, то наиболее удобна форма записи, указанная в пункте 1. (Аналогичную рекомендацию следует дать и для уравнения .)

    1. Введение вспомогательного аргумента

Стандартным путем преобразования выражений вида является следующий прием: пусть - угол, задаваемый равенствами , . Для любых и такой угол существует. Таким образом . Если , или , , , в других случаях .

Пример. Решим уравнение 12cosx - 5sinx = -13

Решение: разделим обе части уравнения на , получим

cosx - sinx = -1.

Одним из решений системы cos = 12/13, sin = 5/13 является = = arccos (12/13). Учитывая это, запишем уравнение в виде:

и, применив формулу для косинуса суммы аргументов, получим

Откуда т.е.

Эта формула и дает все решения исходного уравнения.


    1. Универсальная тригонометрическая подстановка
Многие тригонометрические уравнения можно решить с помощью формул универсальной тригонометрической подстановки

Следует отметить, что применение формул может приводить к сужению ОДЗ исходного уравнения, поскольку не определен в точках , поэтому в таких случаях нужно проверять, являются ли углы , корнями исходного уравнения.

Пример. Решим уравнение

Решение:


Обращение к функции предполагает, что , то есть ,.

По формулам универсальной тригонометрической подстановки исходное уравнение примет вид:

;

;

|:2

;


;

или

;

,;

,;

Ответ: ,; ,.
    1. Решение тригонометрических уравнений с помощью формул

Для решения большинства таких уравнений требуется применение различных формул и преобразований тригонометрических выражений.

Пример.


1) Уравнения, сводящиеся к квадратным.

Это уравнение является квадратным относительно cosx. Введем замену переменных cosx=y, тогда получим уравнение: . Его корни , . Таким образом решение сводится к решению двух уравнений:

cosx=1 имеет корни ,

cosx=-2 не имеет корней.

2) Уравнения, допускающие понижение степени.

Понижение степени происходит с использованием формул:



cos2α =2cos 2 α - 1

cos2α =1-2sin 2 α

.

Выразим через cos2x.

    1. Решение тригонометрических уравнений с помощью разложения на множители

Многие тригонометрические уравнения, правая часть которых равна нулю, решаются разложением их левой части на множители.

Пример.


1) sin2x+cosx=0

2sinxcosx+cosx=0

cosx (2sinx+1) =0


,

2) cos3x+sin5x=0


    1. Решение однородных тригонометрических уравнений
Решим уравнение .

Решение. Это уравнение однородное второй степени. Разделим обе чести уравнения на , получим: tg.

Пусть tg, тогда

, , ; , , .

Ответ. .


    1. Решение нестандартных тригонометрических уравнений
Пример 1. Решим уравнение

Решение. Преобразуем выражение :

Уравнение запишется в виде:


    1. Применение тригонометрии в искусстве и архитектуре
С того времени как человек стал существовать на земле, основой улучшения быта и других сфер жизни стала наука. Основы всего, что создано человеком – это различные направления в естественных и математических науках. Одна из них – геометрия. Архитектура не единственная сфера науки, в которой используются тригонометрические формулы. Большинство композиционных решений и построений рисунков проходило именно с помощью геометрии. Но теоретические данные мало что значат. Хочу привести пример на построение одной скульптуры французского мастера Золотого века искусства.

Пропорциональное соотношение в построении статуи было идеально. Однако при поднятии статуи на высокий пьедестал, она смотрелась уродливой. Скульптором не было учтено, что в перспективе к горизонту уменьшаются многие детали и при взгляде снизу вверх уже не создается впечатления ее идеальности. Велось множество расчетов, чтобы фигура с большой высоты смотрелась пропорционально. В основном они были основаны на методе визирования, то есть приблизительного измерения, на глаз. Однако коэффициент разности тех или иных пропорций позволили сделать фигуру более приближенной к идеалу. Таким образом, зная примерное расстояние от статуи до точки зрения, а именно от верха статуи до глаз человека и высоту статуи, можно рассчитать синус угла падения взгляда с помощью таблицы (тоже самое мы можем сделать и с нижней точкой зрения), тем самым найдем точку зрения (рис.1)

На рис.2 ситуация меняется, так как статую поднимают на высоту АС и НС увеличиваются, можно рассчитать значения косинуса угла С, по таблице найдем угол падения взгляда. В процессе можно рассчитать АН, а также синус угла С, что позволит проверить результаты с помощью основного тригонометрического тождества cos 2 + sin 2  = 1.

Сравнив измерения АН в первом и во втором случаи можно найти коэффициент пропорциональности. Впоследствии мы получим чертеж, а потом скульптуру, при поднятии которой зрительно фигура будет приближена к идеалу


РИС. 1

А
С


Н
А
РИС. 2
Н
С


    1. Тригонометрия в биологии.
Биоритмы.

Экологические ритмы: суточные, сезонные (годовые), приливные и лунные циклы

Физиологические ритмы: ритмы давления, биения сердца, артериальное давление, три биоритма, лежащие в основе «теории трех биоритмов»

Теория трех ритмов.


  • Физический цикл -23 дня. Определяет энергию, силу, выносливость, координацию движения

  • Эмоциональный цикл - 28 дней. Состояние нервной системы и настроение

  • Интеллектуальный цикл - 33 дня. Определяет творческую способность личности


    1. Тригонометрия в медицине.

  1. Бета-ритм - 14-30 Гц, активная умственная деятельность
Альфа-ритм – 8-13 Гц, монотонная, рутинная деятельность

Тета-ритм – 4-8 Гц, состояние близкое ко сну, полудрема

Дельта-ритм - 1-4 Гц, глубокий сон


  1. Многим людям приходится делать кардиограмму сердца, но немногие знают, что кардиограмма человеческого сердца – график синуса или косинуса.

  1. Заключение
В результате выполнения данной исследовательской работы:

  • Я подробнее узнал об истории возникновения тригонометрии.

  • Систематизировал методы решения тригонометрических уравнений.

  • Узнал о применениях тригонометрии в архитектуре, биологии, медицине.

Список литературы.

1. А.Н. Колмогоров, А.М. Абрамов, Ю.П. Дудницин и др. "Алгебра и начала анализа" Учебник для 10-11 классов общеобразовательных учреждений, М., Просвещение, 2010.

2. Глейзер Г.И. История математики в школе: VII-VIII кл. - М.: Просвещение, 1982.

3. Глейзер Г.И. История математики в школе: IX-X кл. - М.: Просвещение, 1983.

4. Рыбников К.А. История математики: Учебник. - М.: Изд-во МГУ, 1994.

Статьи по теме