Важный процесс терморегуляции организма человека. Как осуществляется терморегуляция в организме? Основные способы теплообмена организма

Человеческое тело может сохранять жизнеспособность в довольно небольшом диапазоне внутренних температур – от +25 до +43 градусов. Способность их поддерживать в указанных границах даже при значительных изменениях внешних условий называется терморегуляцией. Физиологическая норма при этом находится в пределах от 36,2 до 37 градусов, отклонения от нее считаются нарушением. Для выяснения причин подобных патологий необходимо знать, как осуществляется терморегуляция в организме, какие факторы влияют на колебания внутренних температур, выяснить методы их коррекции.

Как осуществляется терморегуляция в организме человека?

  1. Химическая терморегуляция – процесс производства тепла. Оно вырабатывается всеми органами в теле, особенно при прохождении сквозь них крови. Больше всего энергии продуцируется в печени и поперечнополосатых мышцах.
  2. Физическая терморегуляция – процесс отдачи тепла. Он осуществляется с помощью непосредственного теплообмена по отношению к воздуху или холодным предметам, инфракрасного излучения, а также испарения пота с поверхности кожи и дыхания.

Как терморегуляция поддерживается в организме человека?

Контроль внутренней температуры происходит за счет чувствительности специальных терморецепторов. Их большая часть располагается в коже, верхних дыхательных путях и слизистых оболочках ротовой полости.

При отклонении внешних условий от нормы терморецепторы производят нервные импульсы, которые поступают в спинной мозг, затем в зрительные бугры, гипоталамус, гипофиз и достигают коры головного мозга. В результате появляется физическое ощущение холода или жара, а центр терморегуляции стимулирует процессы продуцирования или отдачи тепла.

Стоит заметить, что в описанном механизме, в частности – образования энергии, также принимают участие некоторые гормоны. Тироксин интенсифицирует обмен веществ, из-за чего повышается продуцирование тепла. действует аналогично за счет усиления окислительных процессов. Кроме того, он способствует сужению кровеносных сосудов в коже, что препятствует отдаче тепла.

Причины нарушения терморегуляции организма

Незначительные изменения в соотношении производства тепловой энергии и ее передачи во внешнюю среду происходят при физических нагрузках. В данном случае это не является патологией, так как процессы терморегуляции быстро восстанавливаются в состоянии покоя, во время отдыха.

Большую часть рассматриваемых нарушений составляют системные заболевания, сопровождающиеся воспалительными процессами. Однако в подобных ситуациях даже сильное повышение температуры тела некорректно называть патологическим, так как жар и лихорадка возникают в организме для подавления размножения патогенных клеток (вирусов или бактерий). По сути, данный механизм является нормальной защитной реакцией иммунитета.

Истинные нарушения терморегуляции сопровождают повреждения органов, ответственных за ее осуществление, гипоталамуса, гипофиза, спинного и головного мозга. Это происходит при механических травмах, кровоизлияниях, образовании опухолей. Дополнительно усилить патологию могут заболевания эндокринной и сердечно-сосудистой системы, гормональные расстройства, физическое или перегрев.

Лечение нарушения нормальной терморегуляции в организме человека

Восстановить корректное протекание механизмов производства и отдачи тепла можно только после установления причин их изменений. Для постановки диагноза необходимо посетить невролога, сдать ряд лабораторных анализов и выполнить назначенные инструментальные исследования.


Тепловой гомеостаз является основным условием жизнедеятельности. Образование тепла неразрывно связано с энергетическим обменом. Фактором, обеспечивающим непрерывное течение метаболизма в органах и тканях, является определенная температура крови, которая поддерживается специализированными механизмами саморегуляции.

Человек относится к гомойотермным организмам, которые вырабатывают много тепла и отличаются относительным постоянством температуры тела, незначительно изменяющейся в течение суток. Человек может переносить температурные колебания внутренней среды в диапазоне от 25 до 43 0 С.

Температурный фактор определяет скорость протекания ферментативных процессов, всасывания, проведения возбуждения и мышечного сокращения.

Температура тела человека различна в поверхностных и глубоких участках. Внутренние части тела, составляющие примерно 50% его массы, называются «ядром ». Сюда относят мозг, внутренние органы и кровь. Температура «ядра» относительно стабильна. Например, температура крови правого предсердия и температура нижней трети пищевода вблизи сердца варьирует незначительно и составляет величину порядка 36,7-37 0 С. В разных участках «ядра» температурные колебания составляют от 0,2 до 1,2 0 С. Оценка температуры «ядра» проводится в определенных легко доступных участках тела, температура которых практически не отличается от температуры «ядра». Такими участками являются прямая кишка, полость рта и подмышечная впадина. При этом оральная (подъязычная) температура обычно ниже ректальной на 0,2-0,5 0 С, а аксиллярная (в области подмышечной ямки) – ниже ректальной на 0,5-0,8 0 С. При плотном прижатии руки к грудной клетке граница внутреннего слоя «ядра» почти доходит до подмышечной впадины, однако для достижения этого должно пройти не менее 10 минут. Для определения температуры ткани используют различные виды термометров, а также оптический метод – термовизиография.

«Оболочкой » называют поверхностный слой тела толщиной 2,5 см, который характеризуется весьма большими различиями температуры в разных участках. Кроме этого эта температура зависит от температуры внешней среды. В правой и левой половине «оболочки» иногда наблюдается ассиметрия температур. Средняя температура кожи обнаженного человека составляет (при комфортной внешней температуре) 33-34 0 С. При этом температура кожи стопы значительно ниже температуры проксимальных участков нижних конечностей и в еще большей степени – туловища и головы. Температура кожи в области стопы в комфортных условиях равна 24-28 0 С, а при изменении внешних условий – 13-53 0 С. Температура различных частей тела человека в условиях холода и тепла представлена на рисунке 1.

У большинства млекопитающих температура тела соответствует диапазону 36-39 0 С. Интенсивность метаболизма (теплопродукции) определяется как массой тела, так и величиной отдачи тепла с поверхности тела. В соответствии с этим у животных с небольшими размерами тела и с большим, чем у крупных животных, отношением площади поверхности к величине массы тела теплопродукция на 1 кг массы выше.

Температура тела человека колеблется в течение суток в диапазоне 0,3-1,5 0 С, чаще 1,0 0 С. Эти колебания основаны на эндогенном ритме, который определяется «биологическими часами» организма, синхронизированными в режиме «день-ночь». Отчетливо выражен ритм температурных колебаний синхронизированный с менструальным циклом. На ритм суточных температурных изменений накладываются и другие ритмы.

Температура тела определяется соотношением теплопродукции и теплоотдачи. Когда они не соответствуют друг другу, физиологическая система терморегуляции адаптивно меняет теплопродукцию или теплоотдачу. Тем самым обеспечивается относительная стабильность температуры внутренней среды организма. При изменениях температуры окружающей среды в пределах 21-53 0 С температура тела обнаженного человека может оставаться стабильной в течение нескольких минут.

Теплопродукция (химическая терморегуляция) – это способ поддержания температуры тела на оптимальном для метаболизма уровне, осуществляемый за счет изменения интенсивности метаболических экзотермических реакций, в ходе которых образуется тепло. Наибольшее количество тепла образуется в органах с интенсивным обменом веществ: печени, почках, эндокринных и пищеварительных железах, скелетных мышцах. Меньше тепла образуется в костях, хрящах и соединительной ткани. Прием пищи повышает интенсивность обменных процессов на 30%. Наиболее выраженное специфическое динамическое действие оказывают белки, затем углеводы и жиры. Химическая терморегуляция зависит от ряда факторов: индивидуальных особенностей организма, температуры окружающей среды, интенсивности мышечной работы, характера питания, эмоционального состояния, кислородного обеспечения организма, степени ультрафиолетового облучения, интенсивности видимого света. Различают сократительную и несократительную теплопродукцию.

Сократительная теплопродукция связана с произвольными и непроизвольными сокращениями мышц. Произвольные сокращения приводят к многократному увеличению теплообразования, при этом повышаются и теплопотери за счет усиления отдачи тепла конвекцией. То есть произвольные сокращения представляют собой слишком расточительный способ повышения теплопродукции. Непроизвольные сокращения мышц встречаются в двух вариантах: дрожи и терморегуляторного тонуса. Дрожь является экономным способом теплопродукции, так как этот тип сократительной двигательной активности обеспечивает переход всей энергии мышечного сокращения в тепловую энергию. Терморегуляторный тонус развивается в основном в области мышц спины и шеи. Теплопродукция при этом возрастает на 40-50%. Терморегуляторные тонические сокращения возникают при снижении температуры внешней среды на 2 0 С относительно уровня комфорта. Такие сокращения имеют характер зубчатого тетануса, близкого к режиму одиночных сокращений и являются более адаптивными, так как в этом случае при многократном периодическом действии холода формируются изменения тканевых структур – структурный след адаптации. Одним из проявлений таких структурно-адаптационных изменений является увеличение в скелетных мышцах количества красных (медленных) волокон, выполняющих в основном тоническую функцию.

Несократительная теплопродукция значительно выражена в адаптированном к холоду организме. Доля такого механизма в обеспечении прироста теплопродукции на холоде может составлять 50-70%. Развивается это явление в различных тканях, но специфическим субстратом является бурая жировая ткань. Эта ткань локализована у человека в области шеи, между лопаток, в средостении около аорты, крупных вен и симпатической цепочки. Количество бурой жировой ткани составляет 1-2% массы тела, но при адаптации может увеличиться до 5% массы тела. Скорость окисления жирных кислот в бурой жировой ткани в 20 раз превышает эту скорость в белой жировой ткани. При действии холода в этой ткани растут кровоток и уровень обмена веществ, увеличивается температура. Бурая жировая ткань обогревает близлежащие крупные кровеносные сосуды.

Теплоотдача (физическая терморегуляция) – это способ поддержания температуры тела путем отдачи тепла в окружающую среду. Теплоотдача осуществляется за счет физических процессов: теплопроведения, теплоизлучения, конвекции и испарения. Эффективным органом теплоотдачи является кожа благодаря наличию в ней большого количества потовых желез и артериоло-венулярных анастомозов. К поверхности тела потоки тепла переносятся в основном кровью. Кровоток значительно варьирует при изменении просвета сосудов, в частности, состояния артериоло-венулярных анастомозов. Механизмы теплоотдачи в условиях пониженной и повышенной температуры окружающей среды представлены на рисунке 2.

Конвекция – перемещение нагреваемого кожей слоя воздуха вверх и его замещение более холодным воздухом. Конвекция происходит в том случае, когда кожа теплее окружающего воздуха.

Проведение происходит в основном тогда, когда человек погружается в воду, температура которой ниже нейтральной (31-36 0 С). Ввиду того, что теплопроводность воды в 25 раз выше теплопроводности воздуха, кожа человека охлаждается в воде в 50-100 раз быстрее. Если температура воды близка к нулю, то через 1-3 часа может наступить смерть, так как тело человека охлаждается со скоростью 6 0 С в час. В воде теплоотдача происходит в несколько раз быстрее еще и потому, что кроме проведения в воде имеет место и конвекция. Увеличение содержания в организме жира ограничивает эффект теплоотдачи в воде путем конвекции.

Теплоизлучение обеспечивается инфракрасными лучами с длиной волны 5-20 мкм. Эти лучи испускаются кожей при наличии рядом находящихся предметов с более низкой температурой. Обнаженный человек может терять таким путем до 60% тепла.

Теплоиспарение составляет около 20% теплоотдачи тела человека в условиях комфортной температуры среды. Это единственный способ отдачи тепла в окружающую среду, если ее температура оказывается равной температуре тела. Путем испарения 1 л воды человек может отдать одну треть всего тепла, вырабатываемого в условиях покоя в течение суток. Существует два варианта испарения воды с поверхности тела: испарение пота в результате его выделения и испарение воды , оказавшейся на поверхности путем диффузии. Потоотделение – составная часть целостной реакции организма на тепловое воздействие. Испарение выделяющегося пота способствует потере тепла. Испарение воды путем диффузии происходит через слизистые оболочки дыхательных путей. Потери тепла, обусловленные дыханием, составляют 10-13% от общей теплоотдачи организма. Выделение тепла происходит также с мочой и калом.

Механизмы регуляции теплопродукции и теплоотдачи

Терморецепция осуществляется свободными окончаниями тонких сенсорных волокон типа А и С. Существуют терморецепторы центральные и периферические.

Кожные терморецепторы передают в центры терморегуляции сигналы об изменениях температуры среды, а также обеспечивают формирование температурных ощущений. Число Холодовых рецепторов кожи во много раз больше числа тепловых рецепторов. Холодовые рецепторы во внутренних органах и тканях также преобладают.

В центральной нервной системе – спинном и среднем мозге, а также в гипоталамусе – имеются центральные терморецепторы , которые называются термосенсорами . Центральные аппараты физиологической системы терморегуляции имеют большое число входных каналов. Так, термосенсоры могут возбуждаться при их непосредственном охлаждении или нагревании на 0,011 0 С и в результате изменять интенсивность как теплопродукции, так и теплоотдачи организма в целом.

Центр терморегуляции локализуется в гипоталамусе, в котором имеется три вида терморегуляторных нейронов:

1) афферентыне нейроны, принимающие сигналы от периферических и центральных терморецепторов;

2) вставочные;

3) эфферентные нейроны, контролирующие активность эффекторов системы терморегуляции.

От периферических терморецепторов информация поступает в медиальную преоптическую область переднего гипоталамуса . В его ядрах происходит сравнение полученных с периферии сигналов с активностью центральных терморецепторов, которые отражают температурное состояние мозга. Эти две информации интегрируются в заднем гипоталамусе . Полученные, в результате интеграции сигналы начинают управлять процессами теплопродукции и теплоотдачи. В заднем гипоталамусе также располагается моторный центр дрожи, связанный с моторными центрами спинного и продолговатого мозга. Терморецепторы кожи информируют ЦНС о повышении или понижении температуры окружающей среды еще до изменения температуры внутренней среды, при этом включаются терморегуляторные механизмы, которые предотвращают это отклонение. Такая регуляция носит название «регуляции по опережению». Моторный центр дрожи работает как «регулятор по отклонению» так как он возбуждается при снижении температуры тела даже на доли градусов. Кроме гипоталамуса в терморегуляции участвует кора больших полушарий. Она работает как «регулятор по опережению».

Регуляция теплопродукции осуществляется: во-первых, соматической нервной системой , которая запускает сократительные терморегуляторные реакции (дрожательные), во-вторых, симпатической нервной системой , которая активирует выделение из бурой жировой ткани норадреналина, включение в метаболические процессы свободных жирных кислот. Кроме этого симпатическая нервная система запускает выделение из коры надпочечников катехоламинов. В результате повышается выделение первичного тепла за счет рассогласования процессов окисления и фосфорилирования.

Регуляция теплоотдачи связана с активностью симпатической нервной системы. Её возбуждение приводит к сужению кровеносных сосудов кожи, а холинергические симпатические нейроны возбуждают потовые железы.

При снижении температуры «ядра» происходит активация холодовых гипоталамических, органных и сосудистых терморецепторов. В результате активизируется гипоталамический центр теплопродукции и снижается теплоотдача.

При повышении температуры внутренней среды организма активируются гипоталамические, сосудистые, кожные и органные теплорецепторы. Гипоталамический центр теплоотдачи активизируется, и процесс выработки тепла уменьшается, а теплоотдача увеличивается.

Адаптация к периодическим изменениям температуры, закаливание и здоровье

Температурная акклиматизация – это приспособление к многократным повышениям и снижениям температуры внешней среды. Она является целостной реакцией организма, которая развивается при участии практически всех систем организма.

При действии на организм холода повышение теплопродукции сочетается с постепенно развивающимся снижением КПД мышечных сокращений, в результате большая часть энергозатрат направлена на согревание тела. В результате повышается потребление кислорода, увеличивается легочная вентиляция и сократительная активность сердца, повышается АД. В крови увеличивается концентрация гемоглобина, в мышцах увеличивается количество миоглобина. Происходит перераспределение кровотока: он уменьшается на периферии и увеличивается в центре. Что может приводить к холодовому диурезу, вследствие снижения секреции альдостерона и АДГ.

Пластическая адаптация (толерантность) возникает при длительном действии холода (ныряльщики за жемчугом). Она связана с тем что, порог развития дрожи и повышение теплопродукции смещается в сторону более низких температур. При этом на уровне молекул, клеток и тканей появляются изменения, которые способствуют повышению устойчивости к изменениям температуры внутренней среды организма. Тогда функции организма меняются незначительно, хотя температура тела может быть ниже 36 0 .

У постоянных жителей тропических районов земного шара развивается, напротив, привыкание к теплу: температура тела этих людей повышена даже в покое, и увеличение теплоотдачи начинается у них при температуре тела на 0,50 более высокой, чем у жителей районов с умеренным климатом.

У людей, неоднократно по несколько месяцев работающих в условиях антарктических экспедиций, постепенно развиваются энергетически более экономные реакции, в частности, повышается регулирующая активность парасимпатической нервной системы.

На ранних этапах адаптации используются преимущественно генотипические механизмы, которые в экстремальных условиях избыточны и расточительны. В более поздние сроки резервы организма не только своевременно восстанавливаются, но и увеличиваются – развиваются фенотипические механизмы, которые являются более гибкими и экономными.

Рисунок 1. Механизмы теплоотдачи в условиях пониженной и повышенной температуры окружающей среды.



Теплообмен

Теплота способна переходить только из области более высокой температуры в область более низкой. Поэтому поток тепловой энергии от живого организма в окружающую среду не прекращается до тех пор, пока температура тела выше, чем температура среды.

Температура тела определяется соотношением скорости метаболической теплопродукции клеточных структур и скорости рассеивания образующейся тепловой энергии в окружающую среду. Следовательно, теплообмен между организмом и средой является неотъемлемым условием существования теплокровных организмов. Нарушение соотношения этих процессов приводит к изменению температуры тела.

Жизнь может протекать в узком диапазоне температур.

Возможность протекания процессов жизнедеятельности ограничена узким диапазоном температуры внутренней среды, в котором могут происходить основные ферментативные реакции. Для человека снижение температуры тела ниже 25°с и её увеличение выше 43°с, как правило, смертельно. Особенно чувствительны к изменениям температуры нервные клетки.

Ядро и внешняя оболочка тела

С точки зрения терморегуляции, тело человека можно представить состоящим из двух компонентов: внешней оболочки, и внутреннего, ядра. Ядро – это часть тела, которая имеет постоянную температуру, а оболочка – часть тела, в которой имеется температурный градиент. Через оболочку идёт теплообмен между ядром и окружающей средой.

Терморегуляция

Терморегуляция – это совокупность физиологических процессов, направленных на поддержание относительного постоянства температуры ядра в условиях изменения температуры среды с помощью регуляции теплопродукции и теплоотдачи. Терморегуляция направлена на предупреждение нарушений теплового баланса организма или на его восстановление, если подобные нарушения уже произошли, и осуществляется нервно-гуморальным путём.

Виды терморегуляции

Терморегуляцию можно разделить на два основных вида:

Химическую и физическую терморегуляцию. Они, в свою очередь, также подразделяются на несколько видов:

  1. Химическая терморегуляция

    Сократительный термогенез
    - Несократительный термогенез

  2. Физическая терморегуляция

Излучение
-Теплопроведение (кондукция)
-Конвекция
-Испарение

Рассмотрим эти виды терморегуляции подробнее.

Химическая терморегуляция

Регулирование объёма теплопродукции

Химическая терморегуляция теплообразования – осуществляется за счёт изменения уровня обмена веществ, что приводит к изменению образования тепла в организме. Источником тепла в организме являются экзотермические реакции окисления белков, жиров, углеводов, а также гидролиз АТФ.

При расщеплении питательных веществ часть освобождённой энергии аккумулируется в АТФ, часть рассеивается в виде тепла (первичная теплота – 65–70% энергии). При использовании макроэргических связей молекул АТФ часть энергии идёт на выполнение полезной работы, а часть рассеивается (вторичная теплота). Таким образом, два потока теплоты – первичной и вторичной – являются теплопродукцией.

При необходимости повысить теплопродукцию, помимо возможности получения тепла извне, в организме используются механизмы, увеличивающие производство тепловой энергии.

К таким механизмам относятся сократительный и несократительный термогенез.

Сократительный термогенез

Этот вид терморегуляции работает если нам холодно и необходимо поднять температуру тела. Заключается этот метод в сокращении мышц.

При сокращении мышц возрастает гидролиз АТФ, поэтому возрастает поток вторичной теплоты, идущей на согревание тела.

Произвольная активность мышечного аппарата, в основном, возникает под влиянием коры больших полушарий. При этом повышение теплопродукции возможно в 3–5 раз по сравнению с величиной основного обмена.

Обычно при снижении температуры среды и температуры крови первой реакцией является увеличение терморегуляционного тонуса (волосы на теле "встают дыбом", появляются "мурашки") . С точки зрения механики сокращения, данный тонус представляет собой микровибрацию и позволяет увеличить теплопродукцию на 25–40% от исходного уровня. Обычно в создании тонуса принимают участие мышцы головы и шеи.

При более значительном переохлаждении терморегуляционный тонус переходит в мышечную холодовую дрожь . Холодовая дрожь представляет собой непроизвольную ритмическую активность поверхностно расположенных мышц, в результате которой теплопродукция повышается. Считается, что теплопродукция при холодовой дрожи в 2,5 раз выше, чем при произвольной мышечной деятельности.

Описанный механизм работает на рефлекторном уровне, без участия нашего сознания. Но поднять температуру тела можно и при помощи сознательной двигательной активности.

При выполнении физической нагрузки разной мощности теплопродукция возрастает в 5–15 раз по сравнению с уровнем покоя. Температура ядра на протяжении первых 15–30 минут длительной работы довольно быстро повышается до относительно стационарного уровня, а затем сохраняется на этом уровне или продолжает медленно повышаться.

Несократительный термогенез

Этот вид терморегуляции может приводить, как повышению, так и к понижению температуры тела.

Он осуществляется путём ускорения или замедления катаболических процессов обмена веществ. А это, в свою очередь, будет приводить к снижению или увеличению теплопродукции. За счёт этого вида термогенеза теплопродукция может вырасти в 3 раза.

Регуляция процессов несократительного термогенеза осуществляется путём активации симпатической нервной системы, продукции гормонов щитовидной и мозгового слоя надпочечников.

Физическая терморегуляция

Под физической терморегуляцией понимают совокупность физиологических процессов, ведущих к изменению уровня теплоотдачи. Различают несколько механизмов отдачи тепла в окружающую среду.

  1. Излучение
  2. – отдача тепла в виде электромагнитных волн инфракрасного диапазона. За счёт излучения отдают энергию все предметы, температура которых выше абсолютного нуля. Электромагнитная радиация свободно проходит сквозь вакуум, атмосферный воздух для неё тоже можно считать «прозрачным». Количество тепла, рассеиваемого организмом в окружающую среду излучением, пропорционально площади поверхности излучения (площади поверхности тела, не покрытой одеждой) и градиенту температуры. При температуре окружающей среды 20°с и относительной влажности воздуха 40–60% организм взрослого человека рассеивает путём излучения около 40–50% всего отдаваемого тепла.
  3. Теплопроведение (кондукция)
  4. – способ отдачи тепла при непосредственном соприкосновении тела с другими физическими объектами. Количество тепла, отдаваемого в окружающую среду этим способом, пропорционально разнице средних температур контактирующих тел, площади соприкасающихся поверхностей, времени теплового контакта и теплопроводности.
  5. Конвекция
  6. – теплоотдача, осуществляемая путём переноса тепла движущимися частицами воздуха (воды). Воздух, соприкасающийся с кожей, нагревается и поднимается, его место занимает «холодная» порция воздуха и т. д. В условиях температурного комфорта этим способом тело теряет до 15% всего отдаваемого тепла.
  7. Испарение – отдача тепловой энергии в окружающую среду за счёт испарения пота или влаги с поверхности кожи и слизистых дыхательных путей. За счёт испарения организм в условиях комфортной температуры отдаёт около 20% всего рассеиваемого тепла. Испарение делится на 2 вида.

Неощущаемая перспирация – испарение воды со слизистых дыхательных путей (через дыхание) и воды, просачивающейся через эпителий кожного покрова (Испарение с поверхности кожи. Оно идёт даже в случае, если кожа сухая.).

За сутки через дыхательные пути испаряется до 400 мл воды, т.е. организм теряет до 232 ккал в сутки. При необходимости эта величина может быть увеличена за счёт тепловой одышки.

Через эпидермис в среднем за сутки просачивается около 240 мл воды. Следовательно, этим путём организм теряет до 139 ккал в сутки. Эта величина, как правило, не зависит от процессов регуляции и различных факторов среды.

Ощущаемая перспирация – отдача тепла путём испарения пота . В среднем за сутки при комфортной температуре среды выделяется 400–500 мл пота, следовательно, отдаётся до 300 ккал энергии. Однако при необходимости объём потоотделения может увеличиться до 12 л в сутки, т.е. путём потоотделения можно потерять до 7000 ккал в сутки.

Эффективность испарения во многом зависит от среды: чем выше температура и ниже влажность, тем выше эффективность потоотделения как механизма отдачи тепла. При 100% влажности испарение невозможно.

Управление терморегуляцией

Гипоталамус

Система терморегуляции состоит из ряда элементов с взаимосвязанными функциями. Информация о температуре поступает от терморецепторов и при помощи нервной системы попадает в мозг.

Основную роль в терморегуляции играет гипоталамус. Разрушение его центров или нарушение нервных связей ведёт к утрате способности регулировать температуру тела. В переднем гипоталамусе расположены нейроны, управляющие процессами теплоотдачи. При разрушении нейронов переднего гипоталамуса организм плохо переносит высокие температуры, но физиологическая активность вусловиях холода сохраняется. Нейроны заднего гипоталамуса управляют процессами теплопродукции. При их повреждении нарушается способность к усилению энергообмена, поэтому организм плохо переносит холод.

Эндокринная система

Гипоталамус управляет процессами теплопродукции и теплоотдачи, посылая нервные импульсы к железам внутренней секреции, главным образом щитовидной и надпочечникам.

Участие щитовидной железы в терморегуляции обусловлено тем, что влияние пониженной температуры приводит к усиленному выделению её гормонов, ускоряющих обмен веществ и, следовательно, теплообразование.

Роль надпочечников связана с выделением ими в кровь катехоламинов, которые, усиливая или уменьшая окислительные процессы в тканях (например, мышечной), увеличивают или уменьшают теплопродукцию и сужают или увеличивают кожные сосуды, меняя уровень теплоотдачи.

Организм человека имеет постоянную температуру 36,6 С. Для сохранения ее постоянства на коже человека находятся два вида анализаторов: одни реагируют на холод, другие -- на тепло. Температурные анализаторы защищают организм от переохлаждения и перегрева, помогают сохранять постоянную температуру тела. Совокупность процессов теплообразования и теплоотдачи, происходящих в организме и позволяющих поддерживать температуру тела постоянной, называется терморегуляцией.

Механизм теплообразования имеет химическую терморегуляцию, а теплоотдача -- физическую терморегуляцию. Усиление теплообразования достигается за счет увеличения интенсивности энергетического обмена, и главный вклад в него вносит мышечная активность. Так в состоянии покоя теплообразование составляет 111,6-125,5 Вт, а при интенсивной мышечной работе -- 313,6-418,4 Вт.

Для протекания нормальных физиологических процессов в организме человека необходимо, чтобы выделяемая организмом теплота отводилась в окружающую среду. Отдача теплоты организмом в окружающую среду происходит в результате теплопроводности человека через одежду, конвекции тела, излучение на окружающие поверхности, испарения влаги с поверхности, часть теплоты расходуется на нагрев выдыхаемого воздуха. При высокой температуре воздуха в помещении кровеносные сосуды человека расширяются, в результате чего происходит повышенный приток крови к поверхности тела и теплоотдача в окружающую среду возрастает. Вместе с потом организм теряет значительное количество минеральных солей (до 1%, в т.ч. 0,4.0,6 NaCl). При неблагоприятных условиях на производстве потеря жидкости - 8-10 литров за смену и в ней до 60 гр. поваренной соли (всего в организме около 140 гр. NaCl). Потеря крови лишает кровь способности удерживать воду и приводит к нарушению деятельности сердечно-сосудистой системы. Также при высокой температуре легко расходуются углеводы, жиры, разрушаются белки, что также может привести к негативным последствиям. Считается допустимым для человека снижение его массы на 2-3% путём испарения влаги - обезвоживание организма. Обезвоживание на 6% ведёт за собой нарушение умственной деятельности, снижение остроты зрения; испарение влаги на 15-20% приводит к смертельному исходу.

Для восстановления водного баланса работающих в условиях повышенной температуры устанавливают пункты подпитки подсоленной (около 0,5% NaCl) газированной водой. В ряде случаев для этой цели применяют белково-витаминный напиток. В жарких климатических условиях рекомендуется пить охлаждённую воду или чай.

Однако при t = 35 °С окружающей среды отдача теплоты конвекцией и излучением прекращается. При понижении t окружающей среды кровеносные сосуды сужаются и приток крови к поверхности тела замедляется, и теплоотдача уменьшается. Нормальное тепловое самочувствие имеет место, когда тепловыделение человека полностью воспринимается окружающей средой, т.к. тогда имеет место тепловой баланс. В этом случае температура внутренних органов остается постоянной. Если теплопродукция организма не может быть полностью передана окружающей среде, происходит рост температуры внутренних органов, и такое тепловое самочувствие характеризуется понятием “жарко”. Перегревание приводит к гипертермии - перегреванию организма выше допустимого уровня (до 38-39 град.С.), с такими же симптомами, как и у теплового удара. В случае, когда окружающая среда воспринимает больше теплоты, чем ее воспроизводит человек, то происходит охлаждение организма (холодно). Длительное воздействие пониженной температуры, большая подвижность и влажность воздуха, могут быть причиной охлаждения и даже переохлаждения организма - гипотемии.

Теплоизоляция человека, находящегося в состоянии покоя (отдых сидя или лежа), от окружающей среды приводит к повышению температуры внутренних органов уже через 1 час на 1,2 град.С. Теплоизоляция человека, производящего работу средней тяжести, вызовет повышение температуры уже на 5 град.С. и вплотную приблизится к максимально допустимой.

Тепловое самочувствие человека, тепловой баланс в системе человек-окр.среда зависит от температуры окр. среды, подвижности и относительной влажности воздуха, атмосферного давления, температуры окружающих предметов и интенсивности физического нагревания организма.

Влажность воздуха оказывает влияние на терморегуляцию организма: высокая влажность (более чем 85%) затрудняет терморегуляцию вследствие снижения испарения пота, а слишком низкая (менее 20%) - вызывает пересыхание слизистой оболочки дыхательных путей. Оптимальная величина влажности 40 - 60%. Движение воздуха оказывает большое влияние на самочувствие человека. В жарком помещении оно способствует увеличению теплоотдачи организма человека и улучшает состояние при низкой температуре. В зимнее время года скорость движения воздуха не должна превышать 0,2 - 0,5 м/с, а летом - 0,2 - 1 м/с. Скорость движения воздуха может оказывать неблагоприятное воздействие на распространение вредных веществ.

Требуемый состав воздуха может быть обеспечен за счет выполнения следующих мероприятий:

Оценка условий труда базируется на исследовании санитарно-гигиенических факторов производственной среды, тяжести и напряженности трудового процесса. По результатам исследований составляют Карту условий труда на рабочем месте. В ходе выполнения работы необходимо определить: производственные факторы на конкретном рабочем месте, подлежащие лабораторным исследованиям; нормативные значения предельно допустимых параметров факторов производственной среды и трудового процесса, используя систему стандартов безопасности труда, санитарные нормы и правила, другие нормативы по охране труда; фактические значения параметров факторов производственной среды путем лабораторных исследований, инструментальных замеров или путем расчетов. Приборы и устройства для измерения должны соответствовать метрологическим требованиям и быть проверенными в установленные сроки.

Условия труда классифицируются на:

Оптимальные микроклиматические условия - это такое сочетание параметров микроклимата, которое при длительном и систематическом воздействии на человека обеспечивает общее и локальное ощущение теплового комфорта в течение 8-часовой рабочей смены.

Допустимые микроклиматические условия-это такие сочетания параметров микроклимата, которые при длительном и систематическом воздействии на человека могут вызвать напряжение реакций терморегуляции и которые не выходят за пределы физиологических приспособительных возможностей человека.

Терморегуляцией называется способность организма человека регулировать теплообмен с окружающей средой и сохранять температуру тела в определенных границах (36,1 - 37,2°С).

Терморегуляция обеспечивается изменением двух составляющих теплообменногопроцесса:теплопродукции итеплоотдачи.

Из двух способов поддержания теплового равновесия основное значение имеет регуляция теплоотдачи, т.к. этот путь более изменчив и управляем в организме, тогда как регуляция теплопродукции положительную роль играет главным образом при низких температурах воздуха, при высоких же возможность регуляции теплообмена за счет уменьшения продукции тепла ограничена.

Нормальное тепловое самочувствие имеет место, когда соблюдается тепловой баланс

Qт.о.= Qт.в.

Здесь Qт.о. – количество тепла выделяемого человеком, а Qт.в. – количество тепла принимаемого человеком из окружающей среды. Это соответствие характеризует окружающую среду как комфортную. В условиях комфорта у человека не возникает беспокоящих его тепловых ощущений холода или перегрева.

Уравнение теплового баланса (“человек - окружающая среда”) имеет вид

Qт.о.= q к + q т + q и + q исп + q д,

где q к – показатель конвекции;

q т – показатель теплопроводности через одежду;

q и – показатель излучения;

q исп – показатель испарения кожи;

q д – показатель испарения влаги при дыхании.

Теплообмен между человеком и окружающей средой осуществляется: конвекцией в результате омывания тела воздухом (q к ), теплопроводностью через одежду (q т ), излучением на окружающие поверхности (q и ), испарением влаги с поверхности кожи (q исп ), испарением влаги при дыхании (q д ).

Величина тепловыделения организмом человека зависит от степени физического напряжения в определенных климатических условиях и составляет от 85 (в состоянии покоя) до 500 Дж/с (тяжелая работа). В состоянии покоя при температуре окружающего воздуха +18 °С доля q к иq т составляет около 30 %, q и – 45%, q исп – 20%, q д – 5% всей отводимой теплоты.

Процессы регулирования тепловыделений осуществляются в основном тремя способами: биохимическим путем; путем изменения интенсивности кровообращения и интенсивности потовыделения.

Терморегуляция биохимическим путем заключается в изменении интенсивности происходящих в организме окислительных процессов. Например, мышечная дрожь, возникающая при сильном охлаждении организма, повышает выделение теплоты до 125...200Дж/с.

Терморегуляция путем изменения интенсивности кровообращения заключается в способности организма регулировать подачу крови (которая является в данном случае теплоносителем) от внутренних органов к поверхности тела путем сужения или расширения кровеносных сосудов. Перенос теплоты с потоком крови имеет большое значение вследствие низких коэффициентов теплопроводности тканей человеческого организма - 0,314..1,45 Вт/(м °С). При высоких температурах окружающей среды кровеносные сосуды кожи расширяются и к ней от внутренних органов притекает большое количество крови и, следовательно, больше теплоты отдается окружающей среде. При низких температурах происходит обратное явление: сужение кровеносных сосудов кожи, уменьшение притока крови к кожному покрову и, следовательно, меньше теплоты отдается во внешнюю среду. В пальцах кровоснабжение может изменяться даже в 600 раз.



Терморегуляция путем изменения интенсивности потовыделения заключается в изменении процесса теплоотдачи за счет испарения. Испарительное охлаждение тела человека имеет большое значение. Так, при 1Ж = 18°С, <р = 60 %, и» = 0 количество теплоты, отдаваемой человеком в окружающую среду при испарении влаги, составляет около 18 % общей теплоотдачи. При увеличении температуры окружающей среды до + 27°С доля (?„ возрастает до 30 % и при 36,6° С достигает 100 %.

Терморегуляция организма осуществляется одновременно всеми способами. Так, при понижении температуры воздуха увеличению теплоотдачи за счет увеличения разности температур препятствуют такие процессы, как уменьшение влажности кожи и, следовательно, уменьшение теплоотдачи путем испарения, снижение температуры кожных покровов за счет уменьшения интенсивности транспортирования крови от внутренних органов и вместе с этим уменьшение разности температур.

Экспериментально установлено, что оптимальный обмен веществ в организме и соответственно максимальная производительность труда имеют место, если составляющие процесса теплоотдачи находятся в следующих пределах: & + (?т * 30 %; О, * 45 %; (?п * 20 % и (?д * 5 %. Такой баланс характеризует отсутствие напряженности системы терморегуляции.

Параметры микроклимата воздушной среды, которые обусловливают оптимальный обмен веществ в организме и при которых нет неприятных ощущений и напряженности системы терморегуляции, называются комфортными или оптимальными. Зона, в которой окружающая среда полностью отводит тепло, выделяемое организмом, и нет напряжения системы терморегуляции, называется зоной комфорта. Условия, при которых нормальное тепловое состояние человека нарушается, называются дискомфортными. При незначительной напряженности системы терморегуляции и небольшой дискомфортности устанавливаются допустимые метеорологические условия.

Статьи по теме