Формула для определения конечной скорости равноускоренного движения. Графическое представление равноускоренного прямолинейного движения

В этой теме мы рассмотрим очень особенный вид неравномерного движения. Исходя из противопоставления равномерному движению , неравномерное движение - это движение с неодинаковой скоростью, по любой траектории . В чем особенность равноускоренного движения? Это неравномерное движение, но которое "равно ускоряется" . Ускорение у нас ассоциируется с увеличением скорости. Вспомним про слово "равно", получим равное увеличение скорости. А как понимать "равное увеличение скорости", как оценить скорость равно увеличивается или нет? Для этого нам потребуется засечь время, оценить скорость через один и тот же интервал времени. Например, машина начинает двигаться, за первые две секунды она развивает скорость до 10 м/с, за следующие две секунды 20 м/с, еще через две секунды она уже двигается со скоростью 30 м/с. Каждые две секунды скорость увеличивается и каждый раз на 10 м/с. Это и есть равноускоренное движение.


Физическая величина, характеризующая то, на сколько каждый раз увеличивается скорость называется ускорением.

Можно ли движение велосипедиста считать равноускоренным, если после остановки в первую минуту его скорость 7км/ч, во вторую - 9км/ч, в третью 12км/ч? Нельзя! Велосипедист ускоряется, но не одинаково, сначала ускорился на 7км/ч (7-0), потом на 2 км/ч (9-7), затем на 3 км/ч (12-9).

Обычно движение с возрастающей по модулю скоростью называют ускоренным движением. Движение же с убывающей скоростью - замедленным движением. Но физики любое движение с изменяющейся скоростью называют ускоренным движением. Трогается ли автомобиль с места (скорость растет!), или тормозит (скорость уменьшается!), в любом случае он движется с ускорением.

Равноускоренное движение - это такое движение тела, при котором его скорость за любые равные промежутки времени изменяется (может увеличиваться или уменьшаться) одинаково

Ускорение тела

Ускорение характеризует быстроту изменения скорости. Это число, на которое изменяется скорость за каждую секунду. Если ускорение тела по модулю велико, это значит, что тело быстро набирает скорость (когда оно разгоняется) или быстро теряет ее (при торможении). Ускорение - это физическая векторная величина , численно равная отношению изменения скорости к промежутку времени, в течение которого это изменение произошло.

Определим ускорение в следующей задаче. В начальный момент времени скорость теплохода была 3 м/с, в конце первой секунды скорость теплохода стала 5 м/с, в конце второй - 7м/с, в конце третьей 9 м/с и т.д. Очевидно, . Но как мы определили? Мы рассматриваем разницу скоростей за одну секунду. В первую секунду 5-3=2, во вторую секунду 7-5=2, в третью 9-7=2. А как быть, если скорости даны не за каждую секунду? Такая задача: начальная скорость теплохода 3 м/с, в конце второй секунды - 7 м/с, в конце четвертой 11 м/с.В этом случае необходимо 11-7= 4, затем 4/2=2. Разницу скоростей мы делим на промежуток времени.


Эту формулу чаще всего при решении задач применяют в видоизмененном виде:

Формула записана не в векторном виде, поэтому знак "+" пишем, когда тело ускоряется, знак "-" - когда замедляется.

Направление вектора ускорения

Направление вектора ускорения изображено на рисунках


На этом рисунке машина движется в положительном направлении вдоль оси Ox, вектор скорости всегда совпадает с направлением движения (направлен вправо). Когда вектор ускорение совпадает с направлением скорости, это означает, что машина разгоняется. Ускорение положительное.

При разгоне направление ускорения совпадает с направлением скорости. Ускорение положительное.


На этом рисунке машина движется в положительном направлении по оси Ox, вектор скорости совпадает с направлением движения (направлен вправо), ускорение НЕ совпадает с направлением скорости, это означает, что машина тормозит. Ускорение отрицательное.

При торможении направление ускорения противоположно направлению скорости. Ускорение отрицательное.

Разберемся, почему при торможении ускорение отрицательное. Например, теплоход за первую секунду сбросил скорость с 9м/с до 7м/с, за вторую секунду до 5м/с, за третью до 3м/с. Скорость изменяется на "-2м/с". 3-5=-2; 5-7=-2; 7-9=-2м/с. Вот откуда появляется отрицательное значение ускорения.

При решении задач, если тело замедляется, ускорение в формулы подставляется со знаком "минус"!!!

Перемещение при равноускоренном движении

Дополнительная формула, которую называют безвременной

Формула в координатах


Связь со средней скоростью

При равноускоренном движении среднюю скорость можно рассчитывать как среднеарифметическое начальной и конечной скорости

Из этого правила следует формула, которую очень удобно использовать при решении многих задач

Соотношение путей

Если тело движется равноускоренно, начальная скорость нулевая, то пути, проходимые в последовательные равные промежутки времени, относятся как последовательный ряд нечетных чисел.

Главное запомнить

1) Что такое равноускоренное движение;
2) Что характеризует ускорение;
3) Ускорение - вектор. Если тело разгоняется ускорение положительное, если замедляется - ускорение отрицательное;
3) Направление вектора ускорения;
4) Формулы, единицы измерения в СИ

Упражнения

Два поезда идут навстречу друг другу: один - ускоренно на север, другой - замедленно на юг. Как направлены ускорения поездов?

Одинаково на север. Потому что у первого поезда ускорение совпадает по направлению с движением, а у второго - противоположное движению (он замедляется).

Как, зная тормозной путь, определить начальную скорость автомобиля и как, зная характеристики движения, такие как начальная скорость, ускорение, время, определить перемещение автомобиля? Ответы мы получим после того, как познакомимся с темой сегодняшнего урока: «Перемещение при равноускоренном движении, зависимость координаты от времени при равноускоренном движении»

При равноускоренном движении график имеет вид прямой линии, уходящей вверх, так как его проекция ускорения больше нуля.

При равномерном прямолинейном движении площадь численно будет равна модулю проекции перемещения тела. Оказывается, этот факт можно обобщить для случая не только равномерного движения, но и для любого движения, то есть показать, что площадь под графиком численно равна модулю проекции перемещения. Это делается строго математически, но мы воспользуемся графическим способом.

Рис. 2. График зависимости скорости от времени при равноускоренном движении ()

Разобьем график проекции скорости от времени для равноускоренного движения на небольшие промежутки времени Δt. Предположим, что они так малы, что на их протяжении скорость практически не менялась, то есть график линейной зависимости на рисунке мы условно превратим в лесенку. На каждой ее ступеньке мы считаем, что скорость практически не поменялась. Представим, что промежутки времени Δt мы сделаем бесконечно малыми. В математике говорят: совершаем предельный переход. В этом случае площадь такой лесенки будет неограниченно близко совпадать с площадью трапеции, которую ограничивает график V x (t). А это значит, что и для случая равноускоренного движения можно сказать, что модуль проекции перемещения численно равен площади, ограниченной графиком V x (t): осями абсцисс и ординат и перпендикуляром, опущенным на ось абсцисс, то есть площади трапеции ОАВС, которую мы видим на рисунке 2.

Задача из физической превращается в математическую задачу - поиск площади трапеции. Это стандартная ситуация, когда ученые физики составляют модель, которая описывает то или иное явление, а затем в дело вступает математика, которая обогащает эту модель уравнениями, законами - тем, что превращает модель в теорию.

Находим площадь трапеции: трапеция является прямоугольной, так как угол между осями - 90 0 , разобьем трапецию на две фигуры - прямоугольник и треугольник. Очевидно, что общая площадь будет равна сумме площадей этих фигур (рис. 3). Найдем их площади: площадь прямоугольника равна произведению сторон, то есть V 0x · t, площадь прямоугольного треугольника будет равна половине произведения катетов - 1/2АD·BD, подставив значения проекций, получим: 1/2t·(V x - V 0x), а, вспомнив закон изменения скорости от времени при равноускоренном движении: V x (t) = V 0x + а х t, совершенно очевидно, что разность проекций скоростей равна произведению проекции ускорения а х на время t, то есть V x - V 0x = а х t.

Рис. 3. Определение площади трапеции (Источник)

Учитывая тот факт, что площадь трапеции численно равна модулю проекции перемещения, получим:

S х(t) = V 0 x t + а х t 2 /2

Мы с вами получили закон зависимости проекции перемещения от времени при равноускоренном движении в скалярной форме, в векторной форме он будет выглядеть так:

(t) = t + t 2 / 2

Выведем еще одну формулу для проекции перемещения, в которую не будет входить в качестве переменной время. Решим систему уравнений, исключив из нее время:

S x (t) = V 0 x + а х t 2 /2

V x (t) = V 0 x + а х t

Представим, что время нам неизвестно, тогда выразим время из второго уравнения:

t = V x - V 0x / а х

Подставим полученное значение в первое уравнение:

Получим такое громоздкое выражение, возведем в квадрат и приведем подобные:

Мы получили очень удобное выражение проекции перемещения для случая, когда нам неизвестно время движения.

Пусть у нас начальная скорость автомобиля, когда началось торможение, составляет V 0 = 72 км/ч, конечная скорость V = 0, ускорение а = 4 м/с 2 . Узнаем длину тормозного пути. Переведя километры в метры и подставив значения в формулу, получим, что тормозной путь составит:

S x = 0 - 400(м/с) 2 / -2 · 4 м/с 2 = 50 м

Проанализируем следующую формулу:

S x = (V 0 x + V x) / 2 · t

Проекция перемещения- это полусумма проекций начальной и конечной скоростей, умноженная на время движения. Вспомним формулу перемещения для средней скорости

S x = V ср · t

В случае равноускоренного движения средняя скорость будет:

V ср = (V 0 + V к) / 2

Мы вплотную подошли к решению главной задачи механики равноускоренного движения, то есть получению закона, по которому меняется координата со временем:

х(t) = х 0 + V 0 x t + а х t 2 /2

Для того чтобы научиться пользоваться этим законом, разберем типичную задачу.

Автомобиль, двигаясь из состояния покоя, приобретает ускорение 2 м/с 2 . Найти путь, который прошел автомобиль за 3 секунды и за третью секунду.

Дано: V 0 x = 0

Запишем закон, по которому меняется перемещение со временем при

равноускоренном движении: S х = V 0 x t + а х t 2 /2. 2 c < Δt 2 < 3.

Мы можем ответить на первый вопрос задачи, подставив данные:

t 1 = 3 c S 1х = а х t 2 /2 = 2· 3 2 / 2 = 9 (м) - это путь, который прошел

c автомобиль за 3 секунды.

Узнаем сколько он проехал за 2 секунды:

S х (2 с) = а х t 2 /2 = 2· 2 2 / 2 = 4 (м)

Итак, мы с вами знаем, что за две секунды автомобиль проехал 4 метра.

Теперь, зная два эти расстояния, мы можем найти путь, который он прошел за третью секунду:

S 2х = S 1х + S х (2 с) = 9 - 4 = 5 (м)

Выведем формулу, с помощью которой можно рассчитать проекцию вектора перемещения тела, движущегося прямолинейно и равноускоренно, за любой промежуток времени. Для этого обратимся к рисунку 14. Как на рисунке 14, а, так и на рисунке 14, б отрезок АС представляет собой график проекции вектора скорости тела, движущегося с постоянным ускорением а (при начальной скорости v 0).

Рис. 14. Проекция вектора перемещения тела, движущегося прямолинейно и равноускоренно, численно равна площади S под графиком

Напомним, что при прямолинейном равномерном движении тела проекция вектора перемещения, совершенного этим телом, определяется по той же формуле, что и площадь прямоугольника, заключённого под графиком проекции вектора скорости (см. рис. 6). Поэтому проекция вектора перемещения численно равна площади этого прямоугольника.

Докажем, что и в случае прямолинейного равноускоренного движения проекцию вектора перемещения s x можно определять по той же формуле, что и площадь фигуры, заключённой между графиком АС, осью Ot и отрезками ОА и ВС, т. е. что и в этом случае проекция вектора перемещения численно равна площади фигуры под графиком скорости. Для этого на оси Ot (см. рис. 14, а) выделим маленький промежуток времени db. Из точек d и b проведём перпендикуляры к оси Ot до их пересечения с графиком проекции вектора скорости в точках а и с.

Таким образом, за промежуток времени, соответствующий отрезку db, скорость тела меняется от v ах до v cx .

За достаточно малый промежуток времени проекция вектора скорости меняется очень незначительно. Поэтому движение тела в течение этого промежутка времени мало отличается от равномерного, т. е. от движения с постоянной скоростью.

На такие полоски можно разбить всю площадь фигуры ОАСВ, являющейся трапецией. Следовательно, проекция вектора перемещения sx за промежуток времени, соответствующий отрезку ОВ, численно равна площади S трапеции ОАСВ и определяется по той же формуле, что и эта площадь.

Согласно правилу, приведённому в школьных курсах геометрии, площадь трапеции равна произведению полусуммы её оснований на высоту. Из рисунка 14, б видно, что основаниями трапеции ОАСВ являются отрезки ОА = v 0x и ВС = v x , а высотой - отрезок OB = t. Следовательно,

Поскольку v x = v 0x + a x t, a S = s x , то можно записать:

Таким образом, мы получили формулу для расчёта проекции вектора перемещения при равноускоренном движении.

По этой же формуле рассчитывают проекцию вектора перемещения и при движении тела с уменьшающейся по модулю скоростью, только в этом случае векторы скорости и ускорения будут направлены в противоположные стороны, поэтому их проекции будут иметь разные знаки.

Вопросы

  1. Пользуясь рисунком 14, а, докажите, что проекция вектора перемещения при равноускоренном движении численно равна площади фигуры ОАСВ.
  2. Запишите уравнение для определения проекции вектора перемещения тела при его прямолинейном равноускоренном движении.

Упражнение 7

График зависимости V(t) для этого случая показан на рис.1.2.1. Промежуток времени Δt в формуле (1.4) можно брать любой. Отношение ΔV/Δt от этого не зависит. Тогда ΔV=аΔt . Применяя эту формулу к промежутку от t о = 0 до некоторого момента t , можно написать выражение для скорости:

V(t)=V 0 + at. (1.5)

Здесь V 0 – значение скорости при t о = 0. Если направления скорости и ускорения противоположны, то говорят о равнозамедленном движении (рис. 1.2.2).

При равнозамедленном движении аналогично получаем

V(t) = V 0 – at.

Разберём вывод формулы перемещения тела при равноускоренном движении. Заметим, что в этом случае перемещение и пройденный путь – одно и тоже число.

Рассмотрим малый промежуток времени Δt . Из определения средней скорости V cp = ΔS/Δt можно найти пройденный путь ΔS = V cp Δt. На рисунке видно, что путь ΔS численно равен площади прямоугольника с шириной Δt и высотой V cp . Если промежуток времени Δt выбрать достаточно малым, средняя скорость на интервале Δt совпадет с мгновенной скоростью в средней точке. ΔS ≈ VΔt . Это соотношение тем точнее, чем меньше Δt . Разбивая полное время движения на такие малые интервалы и учитывая, что полный путь S складывается из путей, пройденных за эти интервалы, можно убедиться, что на графике скорости он численно равен площади трапеции:

S= ½·(V 0 + V)t ,

подставляя (1.5), получим для равноускоренного движения:

S = V 0 t + (at 2 /2) (1.6)

Для равнозамедленного движения перемещение L вычисляется так:

L= V 0 t–(at 2 /2).

Разберем задачу 1.3.

Пусть график скорости имеет вид, изображенный на рис. 1.2.4. Нарисуйте качественно синхронные графики пути и ускорения от времени.

Студент: – Мне не приходилось встречаться с понятием «синхронные графики», я также не очень представляю, что значит «нарисовать качественно».

– Синхронные графики имеют одинаковые масштабы по оси абсцисс, на которой отложено время. Расположены графики один под другим. Удобны синхронные графики для сопоставления сразу нескольких параметров в один момент времени. В этой задаче мы будем изображать движение качественно, т. е. без учета конкретных числовых значений. Для нас вполне достаточно установить: убывает функция или возрастает, какой вид она имеет, есть ли у нее разрывы или изломы и т. д. Думаю, для начала нам следует рассуждать вместе.


Разделим все время движения на три промежутка ОВ , BD , DE . Скажите, какой характер носит движение на каждом из них и по какой формуле будем вычислять пройденный путь?

Студент: – На участке ОВ тело двигалось равноускоренно с нулевой начальной скоростью, поэтому формула для пути имеет вид:

S 1 (t) = at 2 /2.

Ускорение можно найти, разделив изменение скорости, т.е. длину АВ , на промежуток времени ОВ .

Студент: – На участке ВD тело движется равномерно со скоростью V 0 , приобретенной к концу участка ОВ . Формула пути – S = Vt . Ускорения нет.

S 2 (t) = at 1 2 /2 + V 0 (t– t 1).

Учитывая это пояснение, напишите формулу для пути на участке DE .

Студент: – На последнем участке движение равнозамедленное. Буду рассуждать так. До момента времени t 2 тело уже прошло расстояние S 2 = at 1 2 /2 + V(t 2 – t 1).

К нему надо добавить выражение для равнозамедленного случая, учитывая, что время отсчитывается от значения t 2 получаем пройденный путь, за время t – t 2:

S 3 =V 0 (t–t 2)–/2.

Предвижу вопрос о том, как найти ускорение a 1 . Оно равно СD/DE . В итоге получаем путь, пройденный за время t>t 2

S (t)= at 1 2 /2+V 0 (t–t 1)– /2.

Студент: – На первом участке имеем параболу с ветвями, направленными вверх. На втором – прямую, на последнем – тоже параболу, но с ветвями вниз.

– Ваш рисунок имеет неточности. График пути не имеет изломов, т. е. параболы следует плавно сопрягать с прямой. Мы уже говорили, что скорость определяется тангенсом угла наклона касательной. По Вашему чертежу получается, что в момент t 1 скорость имеет сразу два значения. Если строить касательную слева, то скорость будет численно равна tg α, а если подходить к точке справа, то скорость равна tg β. Но в нашем случае скорость – непрерывная функция. Противоречие снимается, если график построить так.

Есть еще одно полезное соотношение между S , a, V и V 0 . Будем предполагать, что движение происходит в одну сторону. В этом случае перемещение тела от начальной точки совпадает с пройденным путём. Используя (1.5), выразите время t и исключите его из равенства (1.6). Так Вы получите эту формулу.

Студент: V(t) = V 0 + at , значит,

t = (V– V 0)/a,

S = V 0 t + at 2 /2 = V 0 (V– V 0)/a + a[(V– V 0)/a] 2 = .

Окончательно имеем:

S = . (1.6а)

История .

Однажды во время обучения в Геттингене Нильс Бор плохо подготовился к коллоквиуму, и его выступление оказалось слабым. Бор, однако, не пал духом и в заключение с улыбкой сказал:

– Я выслушал здесь столько плохих выступлений, что прошу рассматривать моё как месть.

В общем случае равноускоренным движением называют такое движение, при котором вектор ускорения остается неизменным по модулю и направлению. Примером такого движения является движение камня, брошенного под некоторым углом к горизонту (без учета сопротивления воздуха). В любой точке траектории ускорение камня равно ускорению свободного падения . Для кинематического описания движения камня систему координат удобно выбрать так, чтобы одна из осей, например ось OY , была направлена параллельно вектору ускорения. Тогда криволинейное движение камня можно представить как сумму двух движений - прямолинейного равноускоренного движения вдоль оси OY и равномерного прямолинейного движения в перпендикулярном направлении, т. е. вдоль оси OX (рис. 1.4.1).

Таким образом, изучение равноускоренного движения сводится к изучению прямолинейного равноускоренного движения. В случае прямолинейного движения векторы скорости и ускорения направлены вдоль прямой движения. Поэтому скорость υ и ускорение a в проекциях на направление движения можно рассматривать как алгебраические величины.

Рисунок 1.4.1.

Проекции векторов скорости и ускорения на координатные оси. a x = 0, a y = -g

При равноускоренном прямолинейном движении скорость тела определяется формулой

(*)

В этой формуле υ 0 - скорость тела при t = 0 (начальная скорость ), a = const - ускорение. На графике скорости υ (t ) эта зависимость имеет вид прямой линии (рис. 1.4.2).

Рисунок 1.4.2.

Графики скорости равноускоренного движения

По наклону графика скорости может быть определено ускорение a тела. Соответствующие построения выполнены на рис. 1.4.2 для графика I. Ускорение численно равно отношению сторон треугольника ABC :

Чем больше угол β, который образует график скорости с осью времени, т. е. чем больше наклон графика (крутизна ), тем больше ускорение тела.

Для графика I: υ 0 = -2 м/с, a = 1/2 м/с 2 .

Для графика II: υ 0 = 3 м/с, a = -1/3 м/с 2

График скорости позволяет также определить проекцию перемещения s тела за некоторое время t . Выделим на оси времени некоторый малый промежуток времени Δt . Если этот промежуток времени достаточно мал, то и изменение скорости за этот промежуток невелико, т. е. движение в течение этого промежутка времени можно считать равномерным с некоторой средней скоростью, которая равна мгновенной скорости υ тела в середине промежутка Δt . Следовательно, перемещение Δs за время Δt будет равно Δs = υΔt . Это перемещение равно площади заштрихованной полоски (рис. 1.4.2). Разбив промежуток времени от 0 до некоторого момента t на малые промежутки Δt , получим, что перемещение s за заданное время t при равноускоренном прямолинейном движении равно площади трапеции ODEF . Соответствующие построения выполнены для графика II на рис. 1.4.2. Время t принято равным 5,5 с.

Так как υ - υ 0 = at , окончательная формула для перемещения s тела при равномерно ускоренном движении на промежутке времени от 0 до t запишется в виде:

(**)

Для нахождения координаты y тела в любой момент времени t нужно к начальной координате y 0 прибавить перемещение за время t :

(***)

Это выражение называют законом равноускоренного движения .

При анализе равноускоренного движения иногда возникает задача определения перемещения тела по заданным значениям начальной υ 0 и конечной υ скоростей и ускорения a . Эта задача может быть решена с помощью уравнений, написанных выше, путем исключения из них времени t . Результат записывается в виде

Из этой формулы можно получить выражение для определения конечной скорости υ тела, если известны начальная скорость υ 0 , ускорение a и перемещение s :

Если начальная скорость υ 0 равна нулю, эти формулы принимают вид

Следует еще раз обратить внимание на то, что входящие в формулы равноускоренного прямолинейного движения величины υ 0 , υ, s , a , y 0 являются величинами алгебраическими. В зависимости от конкретного вида движения каждая из этих величин может принимать как положительные, так и отрицательные значения.

Статьи по теме