Вид сопряжений на боковой зазор. Виды сопряжений зубьев колес в передаче

Немного о методах измерения толщины зуба.

В большинстве зубчатых передач для правильной работы необходимо обеспечить боковой зазор. В передачах с регулируемыми осями зазор может настраиваться изменением межосевого расстояния. В передачах с постоянным межосевым расстоянием зазор обеспечивается при нарезании зубьев колёс. Для этого на параметр, характеризующий толщину зуба, задаётся поле допуска с двумя минусами. Таким образом в передаче гарантируется некий зазор между j nmin зубьями. Величина бокового зазора и допуск на боковой зазор (толщину зуба) задаётся в виде сопряжния (А, B, C, D, E, H). А - самый грубый вид сопряжения, Н - самый точный вид сопряжения (минимальный гарантированный зазор равен нулю). Вид сопряжения указывается в степени точности колеса (например, 8-В)

Существует несколько разных геометрических параметров, которыми можно выразить толщину зуба и следовательно боковой зазор в передаче:

  • толщина зуба по хорде S c ;
  • длина общей нормали W ;
  • размер по шарикам M ;
  • смещение исходного контура E H ;
  • межосевое расстояние в беззазорном зацеплении с колесом-эталоном;

Эти параметры в пределах одного колеса связаны строгими геометрическими отношениями. Т.е. зная один параметр можно вычислить любой другой. Формулы приводить здесь не буду. Все требуемые расчёты есть в ГОСТ 16532-70 "Передачи зубчатые цилиндрические эвольвентные внешнего зацепления. Расчет геометрии" и в различных программах.

для измерения косозубых колёс используются шарики

Преимущества:

  • измерения проводится универсальными приборами для измерения длин (штангенциркуль, микрометр) и шариками/роликами диаметр которых можно достаточно легко проконтролировать;
  • удобно измерять мелкомодульные колёса;
  • измерение не требует никаких баз. Базирование происходит непосредственно по эвольвентным поверхностям зубьев;
  • возможность измерения не ограничена геометрическими параметрами колеса.

Недостатки:

  • на результат измерения влияет точность профиля зуба;
  • измерение показывает среднее арифметическое толщин противоположных зубьев, т.е. не полностью выявляет радиальное биение венца
Изменено 26 декабря 2011 пользователем tmpr

Для устранения возможного заклинивания при нагреве передачи, обеспечения условий протекания смазочного материала и ограничения мертвого хода при реверсировании отсчетных и делительных реальных передач они должны иметь боковой зазор jn (между нерабочими профилями зубьев сопряженных колес). Этот зазор необходим также для компенсации погрешностей изготовления и монтажа передачи и для устранения удара по нерабочим профилям, который может быть вызван разрывом контакта рабочих профилей вследствие динамических явлений. Такая передача является однопрофильной (контакт зубьев колес происходит по одним рабочим профилям).

Боковой зазор определяют в сечении, перпендикулярном к направлению зубьев, в плоскости, касательной к основным цилиндрам (рис. 2.52).

Независимо от степени точности изготовления колес передачи предусмотрено шесть видов сопряжении. Установлено шесть классов отклонений межосевого расстояния, обозначаемых в порядке убывания точности римскими цифрами от I до VI. Соответствие видов сопряжении и указанных классов, приведенных в табл. 2.13, допускается изменять.

На боковой зазор установлен допуск Тjn, определяемый разностью между наибольшим и наименьшим зазорами. По мере увеличения бокового зазора увеличивается допуск Тjn. Установлено восемь видов допуска на боковой зазор: х, у, z, а, b, с, d, h. Каждому виду сопряжения соответствует определенный вид допуска (см. табл. 2.13). Соответствие видов сопряжений и видов допусков допускается изменять, используя при этом и виды допуска x, у и z.

Боковой зазор jn min, необходимый для компенсации температурных деформаций и размещения смазочного материала, определяют по формуле

jn min = V + aw (1to1 - 2to2)2sin ,

где V --толщина слоя смазочного материала между зубьями; aw -- межосевое расстояние; 1 и 2 -- температурные коэффициенты линейного расширения материала колес и корпуса; to1 и to2 -- отклонение температур колеса и корпуса от 20 °С; -- угол профиля исходного контура.

Деформацию от нагрева определяют по нормали к профилям.

Боковой зазор обеспечивают путем радиального смещения исходного контура рейки (зуборезного инструмента) от его номинального положения в тело колеса (рис. 2.54). Под номинальным положением исходного контура понимают положение исходного контура на зубчатом колесе, лишенном погрешностей, при котором номинальная толщина зуба соответствует плотному двухпрофильному зацеплению.

Таблица 2.13

Виды сопряжений и соответствующие им виды допусков на боковой зазор и классы отклонений на межосевое расстояние

Связь смещения исходного контура с боковым зазором jn и утолщением толщины зуба по постоянной хорде Ecs можно установить соответственно из треугольников abc и dbc (см. рис. 2.54):

jn min = 2EHssin;

Дополнительное смещение исходного контура ЕHr от его номинального положения в тело зубчатого колеса осуществляют для обеспечения в передаче гарантированного бокового зазора. Наименьшее дополнительное смещение исходного контура назначают в зависимости от степени точности по нормам плавности и вида сопряжения и обозначают: для зубчатых колес с внешними зубьями как - EHs, для колес с внутренними зубьями - через +EHi.

В табл. 2.14 приведены показатели, определяющие гарантированный боковой зазор, допуски и отклонения по нормам бокового зазора.

Таблица 2.14

Показатели бокового зазора

Контролируемый объект

Показатель

Допуск или отклонение

Наименование

Обозначе-ние

Наименование

Обозначе-ние

Передача с нерегули-ремым расположени-ем осей

Отклонение меж-осевого расстояния

Предельные откло-нения межосевого расстояния

Передача с регули-руемым положением осей

Наименьший боковой зазор

Допуск бокового зазора

Зубчатые колеса

Наименьшее допол-нительное смещение исходного контура

Допуск на смещение исходного контура

Наименьшее откло-нение средней дли-ны общей нормали

Допуск на среднюю длину общей нормали

Наименьшее откло-нение длины общей нормали

Допуск на длину общей нормали

Наименьшее откло-нение толщины зуба

Допуск на толщину зуба

Верхнее отклонение измерительного межосевого расстояния

Нижнее отклонение измерительного межосевого расстояния

Примечание. Среднюю длину общей нормали определяют по формуле

Wm = (W1 + W2 + + Wz)/z ,

где W1, W2, Wz - действительные длины общей нормали; z - число зубьев.

Общий боковой зазор должен состоять из гарантированного бокового зазора jn min и зазора Кj, компенсирующего погрешности изготовления зубчатых колес и монтажа передачи и уменьшающего боковой зазор:

jn min + Кj = 2(EHs1 + EHs2)sin.

Зазор Кj отсчитывают по нормали к зубьям.

Необходимое наименьшее смещение исходного контура на обоих зубчатых колесах

EHs1 + EHs2 = 0,5(jn min + Кj)/ sin.

Зазор Кj предназначен для компенсации ряда погрешностей изготовления зубчатых колес и монтажа передачи и определяется по формуле

Наибольший боковой зазор, получаемый между зубьями в передаче, не ограничен стандартом. Он представляет собой замыкающее звено сборочной размерной цепи, в которой составляющими размерами, ограниченными допусками, являются межосевое расстояние и смещение исходных контуров при нарезании обоих колес и др. Поэтому наибольший зазор не может превышать значения, получаемого при наиболее неблагоприятном сочетании отклонений составляющих размеров:

jn max = jn min + 2(TH1 + Tp + 2fa)sin.

Точность зубчатых передач определяется величиной погрешности угла поворота ведомого звена, которая зависит от погрешностей шага, толщины и профиля зуба, погрешностей межосевого расстояния, т.е. погрешностей изготовления и сборки.

Стандарты разделяют показатели точности и бокового зазора. Стандартами для зубчатых передач предусмотрены 12 степеней точности изготовления и сборки колес, пар и передач (для цилиндрических мелкомодульных m < 1 мм ГОСТ 9178-81 и с m ≥ 1,0 мм ГОСТ 1643-81). С увеличением цифры степени точность зубчатых колес уменьшается. Для колес 1–3 степеней численные параметры точности не оговорены. Колеса 4 и 5 степеней точности применяются в качестве эталонных, в зацеплении с которыми контролируются серийно изготавливаемые колеса. Наиболее часто применяют колеса 6–10 степеней точности.

Колеса 6-й степени применяют для высококачественных передач при скоростях, превышающих 8 м/с. Их используют в приборах и механизмах высокой чувствительности и точности, при предъявлении жестких требований к постоянству передаточного отношения и плавности хода.

Колеса 7-й степени точности применяют в точных приборах при окружных скоростях зубьев до 8 м/с и умеренных нагрузках; а колеса 8-й степени – в приборах средней точности для неответственных кинематических цепей при окружных скоростях зубьев до 6 м/с.

9-ю и 10-ю степени точности назначают для зубчатых колес пониженной точности при использовании в неответственных передачах. Колеса могут работать с повышенным шумом и толчками в зацеплениях зубьев при низкой окружной скорости до 2 м/с.

Зубчатые колеса передаточных механизмов приборных устройств обычно имеют 7-ю или 8-ю степень точности. Применение 6-й степени должно быть обосновано.

Для каждой степени точности зубчатых колес и передач установлены нормы: кинематической точности, плавности работы и контакта зубьев. Показателем кинематической точности зубчатого колеса является наибольшая кинематическая погрешность F ir " , определяемая экспериментально на специальных приборах – кинематометрах как наибольшая погрешность угла поворота колеса в пределах одного оборота при его зацеплении с эталонным зубчатым колесом (рис. 14.14, а). Кинематическая точность характеризует постоянство передаточного отношения за один оборот колеса.

в
г
б
а

Показателем плавности работы колеса является местная кинематическая погрешность f ir " , которая определяет величину составляющих полной погрешности угла поворота и многократно повторяется за один оборот колеса. Плавность характеризует постоянство передаточного отношения в пределах поворота колеса на один зуб.



Кинематическая погрешность при расчетах оценивается по допускаемому отклонению F i " , которое определяется как

F i " = F p + f f , мкм, (14.14)

где F p – допуск на накопленную погрешность шага по зубчатому колесу, назначается в зависимости от степени точности по норме кинематической точности (табл. 14.1); f f – допуск на погрешность профиля зуба, назначается в зависимости от степени точности по норме плавности (табл. 14.2).

Таблица 14.1

Допуск на накопленную погрешность шага F p , мкм

Таблица 14.2

Допуск на погрешность профиля зуба f f , мкм

Норма контактов зубьев характеризует полноту прилегания боковых поверхностей сопряженных зубьев в передаче (рис. 14.14, б) и определяется погрешностью направления зуба, перекосом и непараллельностью осей колес. Норма контакта существенна для тяжело нагруженных передач. Для полимерных и металлополимерных передач, в приборостроении она не важна.

На точность зубчатых передач с нерегулируемым межосевым расстоянием, работающих в реверсивном режиме, влияет величина бокового зазора, измеряемого в микрометрах по общей нормали к профилям зубьев (рис. 14.14, в). Боковой зазор передачи регламентируется видом сопряжения зубчатых колес и допуском на боковой зазор. Для мелкомодульных передач (m < 1 мм) стандартом независимо от степени точности колес установлено 5 видов сопряжений, по которым зуб одного колеса входит во впадину второго. Вид сопряжения, определяющий величину минимального бокового зазора j n min в порядке его возрастания обозначается буквами H ,G ,F ,E иD (рис. 14.14, г), а допуск на боковой зазор – h ,q ,f ,e . Видам сопряжений D и E соответствует вид допуска на боковой зазор е, а видам сопряжений F , G , H –допуски f , g , h соответственно. Для передач с модулем m ≥ 1 мм установлено в порядке увеличения гарантированного бокового зазора j n min 6 видов сопряжения: H , E , D , C , B , A и 8 видов допусков на боковой зазор: h , d , c , b , a , x , y , z . Допуск h соответствует видам сопряжений H , E ; допуски d , c , b , a соответствуют соответственно сопряжениям D , C , B , A ; допуски x , y , z не связаны с определенным видом сопряжения.

Причинами появления бокового зазора являются уменьшение толщин сопряженных зубьев, предусмотренное при изготовлении; увеличение межосевого расстояния при сборке; эксцентриситеты делительных окружностей находящихся в зацеплении колес.

Боковой зазор необходим для работы передачи. Он позволяет компенсировать температурные деформации, влияние неточностей межосевого расстояния, прогибов валов, зазоров в опорах и обеспечивает условия смазки.

Сопряжение Н с минимальным зазором применяют в тихоходных передачах при наличии стабильного температурного режима и одинаковом температурном коэффициенте линейного расширения корпуса и зубчатых колес. При колебаниях температуры и применении различных материалов при изготовлении элементов колес необходимы сопряжения G … D с гарантированным зазором, исключающим заклинивание передачи при изменении толщин зубьев, уменьшении межосевого расстояния.

Точность изготовления зубчатых колес и передач задается на чертеже степенью точности, а требования к боковому зазору – видом сопряжения по нормам бокового зазора. Например, зубчатая передача со степенью по нормам кинематической точности 7, по нормам плавности 8, по нормам контакта зубьев 7, с видом сопряжения H и допуском на величину бокового зазора h обозначается 7 – 8 – 7H h . Если мелкомодульная передача имеет одинаковую степень точности по всем трем нормам точности, например 7-ю, и сопряжение F с соответствующим допуском f на боковой зазор, она будет обозначаться 7F f ; соответственно для передачи с m ≥ 1 со степенью точности 8 и сопряжением В, допуском х точность обозначают 8В х.

Типы боковых зазоров (определяются для каждого зубчатого колеса в наборе зубчатых колес)

Реальные зубчатые колеса должны производиться со специальными допустимыми боковыми зазорами. Определите допустимые значения, исходя из своих рабочих условий.

В цилиндрических и косозубых зубчатых зацеплениях существует два способа определения необходимого значения бокового зазора. Во-первых, уменьшите толщину зуба, погрузив пуансон в пустую форму на глубину, превышающую теоретически допустимую по стандарту. Во-вторых, увеличьте межосевое расстояние по сравнению с рассчитанным теоретически.

При задании бокового зазора, учитывайте следующие факторы:

  • Пространство, необходимое для смазки.
  • Дифференциальное расширение между компонентами зубчатого колеса и кожухом.
  • Ошибки в расчетах. Недостаточность обоих колес, ошибки профиля, шаг, толщина зуба, угол наклона зуба и межосевое расстояние. Чем меньше величина бокового зазора, тем более точной будет машинная обработка зубчатого колеса.
  • Условия работы, например, частое реверсирование или избыточная нагрузка.

Размер бокового зазора не должен быть слишком велик для соответствия требованиям работы. Убедитесь, что он достаточен для того, чтобы затраты на машинную обработку не превысили необходимые.

Традиционно устанавливается половина значения допуска для бокового зазора на толщину зубьев каждого зубчатого колеса из пары. Однако существуют исключения. Например, в шестернях, имеющих малое количество зубьев, используются все допустимые значения для ведомого зубчатого колеса. В результате не происходит ослабления зуба шестерни.

  • Круговой боковой зазор j t [мм/дюймы]
  • Нормальный боковой зазор j n [мм/дюймы]
  • Центральный боковой зазор j r [мм/дюймы]
  • Угловой боковой зазор j Θ [град]
Типы зацепления зубчатых колес Отношение между круговым направлением j t и нормальным направлением j n Отношение между круговым направлением j t и центральным направлением j r Отношение между круговым направлением j t и угловым боковым зазором j Θ
Цилиндрическое зубчатое зацепление j n = j t cos α
Косозубое цилиндрическое зубчатое колесо j nn = j tt cos α n cos β

Боковой зазор зацепления косозубого колеса

Для косозубых колес имеется два вида боковых зазоров, относящихся к интервалу зуба. Существует поперечное сечение в нормальном направлении поверхности зубьев “n” и поперечное сечение в перпендикулярном направлении к оси “t”.

j nn

Боковой зазор в направлении, перпендикулярном по отношению к поверхности зуба

j nt

Боковой зазор в круговом направлении в поперечном сечении, перпендикулярном по отношению к зубу

j tn

Боковой зазор в направлении, перпендикулярном по отношению к поверхности зуба в поперечном сечении, перпендикулярном оси

j tt

Боковой зазор в круговом направлении, перпендикулярном оси

В плоскости нормали к зубу:

j nn = j nt cos α n

Для устранения возможного заклинивания при нагреве передачи, обеспечения условий протекания смазочного материала и ограничения мертвого хода при реверсировании отсчетных и делительных реальных передач они должны иметь боковой зазор j n (между нерабочими профилями зубьев сопряженных колес). Этот зазор необходим также для компенсации погрешностей изготовления и монтажа передачи. Боковой зазор определяют в сечении, перпендикулярном к направлению зубьев, в плоскости, касательной к основным цилиндрам (рисунок 8.2.13). Рисунок 8.2.13 Боковой зазор обеспечивается путём радиального смещения исходного контура рейки (зуборезного инструмента) от его номинального положения в теле колеса. Система допусков на зубчатые передачи устанавливает гарантированный боковой зазор j nmin , которым является наименьший предписанный боковой зазор, не зависящий от степени точности колес и передач. Он определяется по формуле: где V – толщина слоя смазочного материала между зубьями; a ω - межосевое расстояние; α 1 и α 2 – температурные коэффициенты линейного расширения материала колес и корпуса; Δt° 1 и Δt° 2 – отклонение температур колеса и корпуса от 20°C; α – угол профиля исходного контура. Толщину слоя смазки ориентировочно принимают в пределах от 0,01m (для тихоходных кинематических передач) до 0,03m (для высокоскоростных передач). Для удовлетворения требований различных отраслей промышленности, независимо от степени точности изготовления колес передачи, предусмотрено шесть видов сопряжений, определяющих различные значения j nmin: A, B,C, D, E, H (рисунок 8.2.14).
Рисунок 8.2.14 Установлено шесть классов отклонений межосевого расстояния, обозначаемых в порядке убывания точности римскими цифрами от I до VI. Гарантированный боковой зазор в каждом сопряжении обеспечивается при соблюдении предусмотренных классов отклонений межосевого расстояния (для сопряжений H и E - II класса, для сопряжений D, C, B и А - классов III, IV, V и VI соответственно). Соответствие видов сопряжений и указанных классов допускается изменять. На боковой зазор установлен допуск T jn , определяемый разностью между наибольшим и наименьшим зазорами. По мере увеличения бокового зазора увеличивается допуск T jn . Установлено восемь видов допуска T jn на боковой зазор: x, y, z, a, b, c, d, h. Видам сопряжений Н и Е соответствует вид допуска h, видам сопряжений D, C, B и A - соответственно виды допусков d, c, b и a. Соответствие видов сопряжений и видов допусков T jn допускается изменять используя при этом и виды допуска z, y и x. Биение зубчатого венца определяется как разность наибольшего и наименьшего показаний индикатора при расположении наконечника во всех впадинах контролируемого колеса.

Стандартизованными параметрами, характеризующими зубчатую передачу являются:

Модуль зубьев,

Передаточное число,

Межосевое расстояние.

Червячные передачи относятся к зубчато-винтовым. Если в зубчато-винтовой передаче углы наклона зубьев принять такими, чтобы зубья шестерни охватывали ее вокруг, то эти зубья превращаются в витки резьбы, шестерня - в червяк, а передача - из винтовой зубчатой в червячную. Преимущество червячной передачи по сравнению с винтовой зубчатой в том, что начальный контакт звеньев происходит по линии, а не в точке. Угол скрещивания валов червяка и червячного колеса может быть каким угодно, но обычно он равен 90°.

Коническая зубчатая передача

Если угол между осями равен 90°, то коническую зубчатую передачу называют ортогональной . В общем случае в неортогональной передаче угол, дополненный до 180° к углу между векторами угловых скоростей извеньев1 и 2, называют межосевым углом Σ

33\34 . Нормирование параметров размерного взаимодействия в шпоночных соединениях

ШПОНОЧНЫЕ СОЕДИНЕНИЯ

Назначение шпоночных соединений Шпоночные соединения предназначены для получения разъёмных соеди-нений, передающих крутящие моменты. Они обеспечивают вращение зубчатых колес, шкивов и других деталей, монтируемых на валы по переходным посад-кам, в которых наряду с натягами могут быть зазоры. Размеры шпоночных со-единений стандартизированы. Различают шпоночные соединения с призматическими (ГОСТ 23360), сегментными (ГОСТ 24071), клиновыми (ГОСТ 24068) и тангенциальными (ГОСТ 24069) шпонками. Шпоночные соединения с призматическими шпонка-ми применяются в малонагруженных тихоходных передачах (кинематические цепи подач станков), в крупногабаритных изделиях (кузнечно-прессовое обо-рудование, маховики двигателей внутреннего сгорания, центрифуги и др.). Клиновые и тангенциальные шпонки воспринимают осевые нагрузки при ре-версах в тяжело нагруженных соединениях. Наиболее широкое использование получили призматические шпонки. Конструктивное исполнение и размеры призматических шпонок Призматические шпонки имеют три исполнения. Вид исполнения шпонки определяет форму паза на валу. Исполнение 1 для закрытого паза, для нормального соединения в усло-виях серийного и массового типов производства; исполнение 2 для открыто-го паза с направляющими шпонками, когда втулка перемещается вдоль вала при свободном соединении; исполнение 3 для полуоткрытого паза со шпон-ками, установленными на конце вала с плотным соединением напрессованной втулки на вал в единичном и серийном типах производства. Размеры шпонки зависят от номинального размера диаметра вала и опре-деляются по ГОСТ 23360. Примеры условных обозначений шпонок: 1. Шпонка 16 х 10 х 50 ГОСТ 23360 (шпонка призматическая, исполнение 1; b х h = 16 х 10, длина шпонки l = 50). 2. Шпонка 2 (3) 18 х 11 х 100 ГОСТ 23360 (шпонка призматическая, испол-нение 2 (или 3), b х h = 18 х 11, длина шпонки l = 100). Посадки шпонок и рекомендации по выбору полей допусков Основным посадочным размером является ширина шпонки b. По этому размеру шпонка сопрягается с двумя пазами: пазом на валу и пазом во втулке. Шпонки обычно соединяются с пазами валов неподвижно, а с пазами втулок с зазором. Натяг необходим для того, чтобы шпонки не перемещались при эксплуатации, а зазор для компенсации неточности размеров и взаимного расположения пазов. Шпонки вне зависимости от посадок изготавливаются по разме-ру b с допуском h9, что делает возможным их централизованное изготовление. Остальные размеры менее ответственны: высота шпонки по h11, длина шпонки по h14, длина паза под шпонку по Н15 . Посадки шпонок осуществляются по системе вала (Сh). Стандартом до-пускаются различные сочетания полей допусков для пазов на валу и во втулке с полем допуска шпонки по ширине. Свободное соединение используется для направляющих длинных шпонок; нормальные применяются наиболее часто для крепёжных шпонок, установлен-ных в середине вала; плотное соединение – для шпонок на конце вала. Основные требования при оформлении поперечных сечений соединения с призматической шпонкой и деталей участвующих в них Предельные отклонения размеров, выбранных полей допусков, опреде-лять по таблицам ГОСТ 25347. При выполнении поперечного сечения шпоночного соединения необхо-димо указать посадки, а у шпонки – поля допусков на размеры b и h шпонки в смешанном виде и шероховатости поверхностей. На чертежах поперечных сечений вала и втулки необходимо указать шероховатости поверхностей, поля допусков на размеры b, d и D в смешанном виде, а также нормировать размеры глубины пазов: на валу t1 – предпочтительный вариант или (d – t1) c отрица-тельным отклонением и во втулке (d + t2) – предпочтительный вариант или t2 c положительным отклонением. В этом и другом случае отклонения выбираются в зависимости от высоты шпонки h . Кроме этого на чертежах по-перечных сечений вала и втулки необходимо ограничивать допусками точность формы и взаимного расположения. Предъявляются требования по допустимым отклонениям от симметричности шпоночных пазов и параллельности плоско-сти симметрии паза относительно оси детали (базы). При наличии в соединении одной шпонки допуск параллельности принимать равным 0,5IT9, допуски симетричности – 2IT9, а при двух шпонках, расположенных диаметрально, – 0,5 IT9 от номинального размера b шпонки. Допуски симметричности могут быть зависимыми в крупносерийном и массовом производстве.

Статьи по теме