Методы количественного анализа: Оценка доверительных интервалов. Доверительный интервал

Доверительный интервал для математического ожидания - это такой вычисленный по данным интервал, который с известной вероятностью содержит математическое ожидание генеральной совокупности. Естественной оценкой для математического ожидания является среднее арифметическое её наблюденных значений. Поэтому далее в течение урока мы будем пользоваться терминами "среднее", "среднее значение". В задачах рассчёта доверительного интервала чаще всего требуется ответ типа "Доверительный интервал среднего числа [величина в конкретной задаче] находится от [меньшее значение] до [большее значение]". С помощью доверительного интервала можно оценивать не только средние значения, но и удельный вес того или иного признака генеральной совокупности. Средние значения, дисперсия, стандартное отклонение и погрешность, через которые мы будем приходить к новым определениям и формулам, разобраны на уроке Характеристики выборки и генеральной совокупности .

Точечная и интервальная оценки среднего значения

Если среднее значение генеральной совокупности оценивается числом (точкой), то за оценку неизвестной средней величины генеральной совокупности принимается конкретное среднее, которое рассчитано по выборке наблюдений. В таком случае значение среднего выборки - случайной величины - не совпадает со средним значением генеральной совокупности. Поэтому, указывая среднее значение выборки, одновременно нужно указывать и ошибку выборки. В качестве меры ошибки выборки используется стандартная ошибка , которая выражена в тех же единицах измерения, что и среднее. Поэтому часто используется следующая запись: .

Если оценку среднего требуется связать с определённой вероятностью, то интересующий параметр генеральной совокупности нужно оценивать не одним числом, а интервалом. Доверительным интервалом называют интервал, в котором с определённой вероятностью P находится значение оцениваемого показателя генеральной совокупности. Доверительный интервал, в котором с вероятностью P = 1 - α находится случайная величина , рассчитывается следующим образом:

,

α = 1 - P , которое можно найти в приложении к практически любой книге по статистике.

На практике среднее значение генеральной совокупности и дисперсия не известны, поэтому дисперсия генеральной совокупности заменяется дисперсией выборки , а среднее генеральной совокупности - средним значением выборки . Таким образом, доверительный интервал в большинстве случаев рассчитывается так:

.

Формулу доверительного интервала можно использовать для оценки среднего генеральной совокупности, если

  • известно стандартное отклонение генеральной совокупности;
  • или стандартное отклонение генеральной совокупности не известно, но объём выборки - больше 30.

Среднее значение выборки является несмещённой оценкой среднего генеральной совокупности . В свою очередь, дисперсия выборки не является несмещённой оценкой дисперсии генеральной совокупности . Для получения несмещённой оценки дисперсии генеральной совокупности в формуле дисперсии выборки объём выборки n следует заменить на n -1.

Пример 1. Собрана информация из 100 случайно выбранных кафе в некотором городе о том, что среднее число работников в них составляет 10,5 со стандартным отклонением 4,6. Определить доверительный интервал 95% числа работников кафе.

где - критическое значение стандартного нормального распределения для уровня значимости α = 0,05 .

Таким образом, доверительный интервал 95% среднего числа работников кафе составил от 9,6 до 11,4.

Пример 2. Для случайной выборки из генеральной совокупности из 64 наблюдений вычислены следующие суммарные величины:

сумма значений в наблюдениях ,

сумма квадратов отклонения значений от среднего .

Вычислить доверительный интервал 95 % для математического ожидания.

вычислим стандартное отклонение:

,

вычислим среднее значение:

.

Подставляем значения в выражение для доверительного интервала:

где - критическое значение стандартного нормального распределения для уровня значимости α = 0,05 .

Получаем:

Таким образом, доверительный интервал 95% для математического ожидания данной выборки составил от 7,484 до 11,266.

Пример 3. Для случайной выборки из генеральной совокупности из 100 наблюдений вычислено среднее значение 15,2 и стандартное отклонение 3,2. Вычислить доверительный интервал 95 % для математического ожидания, затем доверительный интервал 99 %. Если мощность выборки и её вариация остаются неизменными, а увеличивается доверительный коэффициент, то доверительный интервал сузится или расширится?

Подставляем данные значения в выражение для доверительного интервала:

где - критическое значение стандартного нормального распределения для уровня значимости α = 0,05 .

Получаем:

.

Таким образом, доверительный интервал 95% для среднего данной выборки составил от 14,57 до 15,82.

Вновь подставляем данные значения в выражение для доверительного интервала:

где - критическое значение стандартного нормального распределения для уровня значимости α = 0,01 .

Получаем:

.

Таким образом, доверительный интервал 99% для среднего данной выборки составил от 14,37 до 16,02.

Как видим, при увеличении доверительного коэффициента увеличивается также критическое значение стандартного нормального распределения, а, следовательно, начальная и конечная точки интервала расположены дальше от среднего, и, таким образом, доверительный интервал для математического ожидания увеличивается.

Точечная и интервальная оценки удельного веса

Удельный вес некоторого признака выборки можно интерпретировать как точечную оценку удельного веса p этого же признака в генеральной совокупности. Если же эту величину нужно связать с вероятностью, то следует рассчитать доверительный интервал удельного веса p признака в генеральной совокупности с вероятностью P = 1 - α :

.

Пример 4. В некотором городе два кандидата A и B претендуют на пост мэра. Случайным образом были опрошены 200 жителей города, из которых 46% ответили, что будут голосовать за кандидата A , 26% - за кандидата B и 28% не знают, за кого будут голосовать. Определить доверительный интервал 95% для удельного веса жителей города, поддерживающих кандидата A .

ДОВЕРИТЕЛЬНЫЕ ИНТЕРВАЛЫ ДЛЯ ЧАСТОТ И ДОЛЕЙ

© 2008 г.

Национальный институт общественного здоровья, г. Осло, Норвегия

В статье описывается и обсуждается расчет доверительных интервалов для частот и долей по методам Вальда, Уилсона, Клоппера – Пирсона, с помощью углового преобразования и по методу Вальда с коррекцией по Агрести – Коуллу. Изложенный материал дает общие сведения о способах расчета доверительных интервалов для частот и долей и призван вызвать интерес читателей журнала не только к использованию доверительных интервалов при представлении результатов собственных исследований, но и к прочтению специализированной литературы перед началом работы над будущими публикациями.

Ключевые слова : доверительный интервал, частота, доля

В одной из предыдущих публикаций кратко упоминалось описание качественных данных и сообщалось, что их интервальная оценка предпочтительнее точечной для описания частоты встречаемости изучаемой характеристики в генеральной совокупности . Действительно, поскольку исследования проводятся с использованием выборочных данных, проекция результатов на генеральную совокупность должна содержать элемент неточности выборочной оценки. Доверительный интервал представляет собой меру точности оцениваемого параметра. Интересно, что в некоторых книгах по основам статистики для медиков тема доверительных интервалов для частот полностью игнорируется . В данной статье мы рассмотрим несколько способов расчета доверительных интервалов для частот, подразумевая такие характеристики выборки, как бесповторность и репрезентативность, а также независимость наблюдений друг от друга. Под частотой в данной статье понимается не абсолютное число, показывающее, сколько раз встречается в совокупности то или иное значение, а относительная величина , определяющая долю участников исследования, у которых встречается изучаемый признак.

В биомедицинских исследованиях чаще всего используются 95 % доверительные интервалы. Данный доверительный интервал представляет собой область, в которую попадает истинное значение доли в 95 % случаев. Другими словами, можно с 95 % надежностью сказать, что истинное значение частоты встречаемости признака в генеральной совокупности будет находиться в пределах 95 % доверительного интервала.

В большинстве пособий по статистике для исследователей от медицины сообщается , что ошибка частоты рассчитывается с помощью формулы

где p – частота встречаемости признака в выборке (величина от 0 до 1). В большинстве отечественных научных статей указывается значение частоты встречаемости признака в выборке (р), а также ее ошибка (s) в виде p ± s. Целесообразнее, однако, представлять 95 % доверительный интервал для частоты встречаемости признака в генеральной совокупности, который будет включать значения от

до.

В некоторых пособиях рекомендуется при малых выборках заменять значение 1,96 на значение t для N – 1 степеней свободы, где N – количество наблюдений в выборке. Значение t находится по таблицам для t-распределения, имеющимся практически во всех пособиях по статистике. Использование распределения t для метода Вальда не дает видимых преимуществ по сравнению с другими методами, рассмотренными ниже , и потому некоторыми авторами не приветствуется .

Представленный выше метод расчета доверительных интервалов для частот или долей носит имя Вальда в честь Авраама Вальда (Abraham Wald, 1902–1950), поскольку широкое применение его началось после публикации Вальда и Вольфовица в 1939 году . Однако сам метод был предложен Пьером Симоном Лапласом (1749–1827) еще в 1812 году.

Метод Вальда очень популярен, однако его применение связано с существенными проблемами. Метод не рекомендуется при малых объемах выборок, а также в случаях, когда частота встречаемости признака стремится к 0 или 1 (0 % или 100 %) и просто невозможно для частот 0 и 1. Кроме того, аппроксимация нормального распределения, которая используется при расчете ошибки, «не работает» в случаях, когда n · p < 5 или n · (1 – p) < 5 . Более консервативные статистики считают, что n · p и n · (1 – p) должны быть не менее 10 . Более детальное рассмотрение метода Вальда показало, что полученные с его помощью доверительные интервалы в большинстве случаев слишком узки, то есть их применение ошибочно создает слишком оптимистичную картину, особенно при удалении частоты встречаемости признака от 0,5, или 50 % . К тому же при приближении частоты к 0 или 1 доверительный интревал может принимать отрицательные значения или превышать 1, что выглядит абсурдно для частот. Многие авторы совершенно справедливо не рекомендуют применять данный метод не только в уже упомянутых случаях, но и тогда, когда частота встречаемости признака менее 25 % или более 75 % . Таким образом, несмотря на простоту расчетов, метод Вальда может применяться лишь в очень ограниченном числе случаев. Зарубежные исследователи более категоричны в своих выводах и однозначно рекомендуют не применять этот метод для небольших выборок , а ведь именно с такими выборками часто приходится иметь дело исследователям-медикам.

Поскольку новая переменная имеет нормальное распределение, нижняя и верхняя границы 95 % доверительного интервала для переменной φ будут равны φ-1,96 и φ+1,96left">

Вместо 1,96 для малых выборок рекомендуется подставлять значение t для N – 1 степеней свободы . Данный метод не дает отрицательных значений и позволяет более точно оценить доверительные интервалы для частот, чем метод Вальда. Кроме того, он описан во многих отечественных справочниках по медицинской статистике , что, правда, не привело к его широкому использованию в медицинских исследованиях. Расчет доверительных интервалов с использованием углового преобразования не рекомендуется при частотах, приближающихся к 0 или 1 .

На этом описание способов оценки доверительных интервалов в большинстве книг по основам статистики для исследователей-медиков обычно заканчивается, причем эта проблема характерна не только для отечественной, но и для зарубежной литературы. Оба метода основаны на центральной предельной теореме, которая подразумевает наличие большой выборки.

Принимая во внимание недостатки оценки доверительных интервалов с помощью вышеупомянутых методов, Клоппер (Clopper) и Пирсон (Pearson) предложили в 1934 году способ расчета так называемого точного доверительного интервала с учетом биномиального распределения изучаемого признака . Данный метод доступен во многих онлайн-калькуляторах, однако доверительные интервалы, полученные таким образом, в большинстве случаев слишком широки. В то же время этот метод рекомендуется применять в тех случаях, когда необходима консервативная оценка. Степень консервативности метода увеличивается по мере уменьшения объема выборки, особенно при N < 15 . описывает применение функции биномиального распределения для анализа качественных данных с использованием MS Excel, в том числе и для определения доверительных интервалов, однако расчет последних для частот в электронных таблицах не «затабулирован» в удобном для пользователя виде, а потому, вероятно, и не используется большинством исследователей.

По мнению многих статистиков , наиболее оптимальную оценку доверительных интервалов для частот осуществляет метод Уилсона (Wilson), предложенный еще в 1927 году , но практически не используемый в отечественных биомедицинских исследованиях. Данный метод не только позволяет оценить доверительные интервалы как для очень малых и очень больших частот, но и применим для малого числа наблюдений. В общем виде доверительный интервал по формуле Уилсона имеет вид от



где принимает значение 1,96 при расчете 95 % доверительного интервала, N – количество наблюдений, а р – частота встречаемости признака в выборке. Данный метод доступен в онлайн-калькуляторах, поэтому его применение не является проблематичным. и не рекомендуют использовать этот метод при n · p < 4 или n · (1 – p) < 4 по причине слишком грубого приближения распределения р к нормальному в такой ситуации, однако зарубежные статистики считают метод Уилсона применимым и для малых выборок .

Считается, что помимо метода Уилсона метод Вальда с коррекцией по Агрести – Коуллу также дает оптимальную оценку доверительного интервала для частот . Коррекция по Агрести – Коуллу представляет собой замену в формуле Вальда частоты встречаемости признака в выборке (р) на р`, при расчете которой к числителю добавляется 2, а к знаменателю добавляется 4, то есть p` = (X + 2) / (N + 4), где Х – количество участников исследования, у которых имеется изучаемый признак, а N – объем выборки . Такая модификация приводит к результатам, очень похожим на результаты применения формулы Уилсона, за исключением случаев, когда частота события приближается к 0 % или 100 %, а выборка мала . Кроме вышеупомянутых способов расчета доверительных интервалов для частот были предложены поправки на непрерывность как для метода Вальда, так и для метода Уилсона для малых выборок, однако исследования показали, что их применение нецелесообразно .

Рассмотрим применение вышеописанных способов расчета доверительных интервалов на двух примерах. В первом случае мы изучаем большую выборку, состоящую из 1 000 случайно отобранных участников исследования, из которых 450 имеют изучаемый признак (это может быть фактор риска, исход или любой другой признак), что составляет частоту 0,45, или 45 %. Во втором случае исследование проводится с использованием малой выборки, допустим, всего 20 человек, причем изучаемый признак имеется всего у 1 участника исследования (5 %). Доверительные интервалы по методу Вальда, по методу Вальда с коррекцией по Агрести – Коуллу, по методу Уилсона рассчитывались с помощью онлайн-калькулятора, разработанного Jeff Sauro (http://www. /wald. htm). Доверительные интервалы по методу Уилсона с поправкой на непрерывность рассчитывались с помощью калькулятора, предложенного порталом Wassar Stats: Web Site for Statistical Computation (http://faculty. vassar. edu/lowry/prop1.html). Расчеты с помощью углового преобразования Фишера производились «вручную» с использованием критического значения t для 19 и 999 степеней свободы соответственно. Результаты расчетов представлены в таблице для обоих примеров.

Доверительные интервалы, рассчитанные шестью разными способами для двух примеров, описанных в тексте

Способ расчета доверительного интервала

Р=0,0500, или 5%

95% ДИ для X=450, N=1000, Р=0,4500, или 45%

–0,0455–0,2541

Вальда с коррекцией по Агрести – Коуллу

<,0001–0,2541

Уилсона с коррекцией на непрерывность

«Точный метод» Клоппера – Пирсона

Угловое преобразование

<0,0001–0,1967

Как видно из таблицы, для первого примера доверительный интервал, рассчитанный по «общепринятому» методу Вальда заходит в отрицательную область, чего для частот быть не может. К сожалению, подобные казусы нередки в отечественной литературе. Традиционный способ представления данных в виде частоты и ее ошибки частично маскирует эту проблему. Например, если частота встречаемости признака (в процентах) представлена как 2,1 ± 1,4, то это не настолько «режет глаз», как 2,1 % (95 % ДИ: –0,7; 4,9), хоть и обозначает то же самое. Метод Вальда с коррекцией по Агрести – Коуллу и расчет с помощью углового преобразования дают нижнюю границу, стремящуюся к нулю. Метод Уилсона с поправкой на непрерывность и «точный метод» дают более широкие доверительные интервалы, чем метод Уилсона. Для второго примера все методы дают приблизительно одинаковые доверительные интервалы (различия появляются только в тысячных), что неудивительно, так как частота встречаемости события в этом примере не сильно отличается от 50 %, а объем выборки достаточно велик.

Для читателей, заинтересовавшихся данной проблемой, можно порекомендовать работы R. G. Newcombe и Brown, Cai и Dasgupta , в которых приводятся плюсы и минусы применения 7 и 10 различных методов расчета доверительных интервалов соответственно . Из отечественных пособий рекомендуется книга и , в которой помимо подробного описания теории представлены методы Вальда, Уилсона, а также способ расчета доверительных интервалов с учетом биномиального распределения частот. Кроме бесплатных онлайн-калькуляторов (http://www. /wald. htm и http://faculty. vassar. edu/lowry/prop1.html) доверительные интервалы для частот (и не только!) можно рассчитывать с помощью программы CIA (Confidence Intervals Analysis), которую можно загрузить с http://www. medschool. soton. ac. uk/cia/ .

В следующей статье будут рассмотрены одномерные способы сравнения качественных данных.

Список литературы

Банержи А. Медицинская статистика понятным языком: вводный курс / А. Банержи. – М. : Практическая медицина, 2007. – 287 с. Медицинская статистика / . – М. : Медицинское информационное агенство, 2007. – 475 с. Гланц С. Медико-биологическая статистика / С. Гланц. – М. : Практика, 1998. Типы данных, проверка распределения и описательная статистика / // Экология человека – 2008. – № 1. – С. 52–58. Жижин К. С . Медицинская статистика: учебное пособие / . – Ростов н/Д: Феникс, 2007. – 160 с. Прикладная медицинская статистика / , . – СПб. : Фолиант, 2003. – 428 с. Лакин Г. Ф . Биометрия / . – М. : Высшая школа, 1990. – 350 с. Медик В. А . Математическая статистика в медицине / , . – М. : Финансы и статистика, 2007. – 798 с. Математическая статистика в клинических исследованиях / , . – М. : ГЭОТАР-МЕД, 2001. – 256 с. Юнкеров В . И . Медико-статистическая обработка данных медицинских исследований / , . – СПб. : ВмедА, 2002. – 266 с. Agresti A. Approximate is better than exact for interval estimation of binomial proportions / A. Agresti, B. Coull // American statistician. – 1998. – N 52. – С. 119–126. Altman D. Statistics with confidence // D. Altman, D. Machin, T. Bryant, M. J. Gardner. – London: BMJ Books, 2000. – 240 p. Brown L. D. Interval estimation for a binomial proportion / L. D. Brown, T. T. Cai, A. Dasgupta // Statistical science. – 2001. – N 2. – P. 101–133. Clopper C. J. The use of confidence or fiducial limits illustrated in the case of the binomial / C. J. Clopper, E. S. Pearson // Biometrika. – 1934. – N 26. – P. 404–413. Garcia-Perez M. A . On the confidence interval for the binomial parameter / M. A. Garcia-Perez // Quality and quantity. – 2005. – N 39. – P. 467–481. Motulsky H. Intuitive biostatistics // H. Motulsky. – Oxford: Oxford University Press, 1995. – 386 p. Newcombe R. G. Two-Sided Confidence Intervals for the Single Proportion: Comparison of Seven Methods / R. G. Newcombe // Statistics in Medicine. – 1998. – N. 17. – P. 857–872. Sauro J. Estimating completion rates from small samples using binomial confidence intervals: comparisons and recommendations / J. Sauro, J. R. Lewis // Proceedings of the human factors and ergonomics society annual meeting. – Orlando, FL, 2005. Wald A. Confidence limits for continuous distribution functions // A. Wald, J. Wolfovitz // Annals of Mathematical Statistics. – 1939. – N 10. – P. 105–118. Wilson E. B . Probable inference, the law of succession, and statistical inference / E. B. Wilson // Journal of American Statistical Association. – 1927. – N 22. – P. 209–212.

CONFIDENCE INTERVALS FOR PROPORTIONS

A. M. Grjibovski

National Institute of Public Health, Oslo, Norway

The article presents several methods for calculations confidence intervals for binomial proportions, namely, Wald, Wilson, arcsine, Agresti-Coull and exact Clopper-Pearson methods. The paper gives only general introduction to the problem of confidence interval estimation of a binomial proportion and its aim is not only to stimulate the readers to use confidence intervals when presenting results of own empirical research, but also to encourage them to consult statistics books prior to analysing own data and preparing manuscripts.

Key words : confidence interval, proportion

Контактная информация:

старший советник Национального института общественного здоровья, г. Осло, Норвегия

И др. Все они являются оценками своих теоретических аналогов, которые можно было бы получить, если бы в распоряжении была не выборка, а генеральная совокупность. Но увы, генеральная совокупность – это очень дорого и часто недоступно.

Понятие об интервальном оценивании

Любая выборочная оценка обладает некоторым разбросом, т.к. является случайной величиной, зависящей от значений в конкретной выборке. Стало быть, для более надежных статистических выводов следует знать не только точечную оценку, но и интервал, который с высокой вероятностью γ (гамма) накрывает оцениваемый показатель θ (тета).

Формально, это два таких значения (статистики) T 1 (X) и T 2 (X) , что T 1 < T 2 , для которых при заданном уровне вероятности γ выполняется условие:

Короче, с вероятностью γ или больше истинный показатель находится между точками T 1 (X) и T 2 (X) , которые называются нижней и верхней границей доверительного интервала .

Одним из условий построения доверительных интервалов является его максимальная узость, т.е. он должен быть насколько это возможно коротким. Желание вполне естественно, т.к. исследователь старается точнее локализовать нахождение искомого параметра.

Отсюда следует, что доверительный интервал должен накрывать максимальные вероятности распределения. а сама оценка быть в центре.

То бишь вероятность отклонения (истинного показателя от оценки) в большую сторону равна вероятности отклонения в меньшую сторону. Следует также отметить, что для несимметричных распределений интервал справа не равен интервалу слева.

По рисунку выше отчетливо видно, что чем больше доверительная вероятность, тем шире интервал – прямая зависимость.

Это была небольшая вводная часть в теорию интервального оценивания неизвестных параметров. Перейдем к нахождению доверительных границ для математического ожидания.

Доверительный интервал для математического ожидания

Если исходные данные распределены по , то и среднее будет нормальной величиной. Это следует из того правила, что линейная комбинация нормальных величин также имеет нормальное распределение. Следовательно, для расчета вероятностей мы могли бы использовать математический аппарат нормального закона распределения.

Однако для этого потребуется знать два параметра – матожидание и дисперсию, которые обычно не известны. Можно, конечно, вместо параметров использовать оценки (среднюю арифметическую и ), но тогда распределение средней будет не совсем нормальным, оно будет немного приплюснуто книзу. Этот факт ловко подметил гражданин Уильям Госсет из Ирландии, опубликовав свое открытие в мартовском выпуске журнала «Biometrica» за 1908 год. В целях конспирации Госсет подписался Стьюдентом. Так появилось t-распределение Стьюдента.

Однако нормальное распределение данных, использовавшееся К. Гауссом при анализе ошибок астрономических наблюдений, в земной жизни встречается крайне редко и установить это довольно сложно (для высокой точности необходимо порядка 2 тысяч наблюдений). Поэтому предположение о нормальности лучше всего отбросить и использовать методы, не зависящие от распределения исходных данных.

Возникает вопрос: каково же распределение средней арифметической, если оно рассчитано по данным неизвестного распределения? Ответ дает известная в теории вероятностей Центральная предельная теорема (ЦПТ). В математике существует несколько ее вариантов (на протяжении долгих лет формулировки уточнялись), но все они, грубо говоря, сводятся к утверждению, что сумма большого количества независимых случайных величин подчиняется нормальному закону распределения.

При расчете средней арифметической как раз используется сумма случайных величин. Отсюда получается, что среднее арифметическое имеет нормальное распределение, у которого матожидание – это матожидание исходных данных, а дисперсия – .

Умные люди умеют доказывать ЦПТ, но мы в этом убедимся с помощью эксперимента, проведенного в Excel. Смоделируем выборку из 50-ти равномерно распределенных случайных величин (с помощью функции Excel СЛУЧМЕЖДУ). Затем сделаем 1000 таких выборок и для каждой рассчитаем среднюю арифметическую. Посмотрим на их распределение.

Видно, что распределение средней близко к нормальному закону. Если объем выборок и их количество сделать еще больше, то сходство будет еще лучше.

Теперь, когда мы воочию убедились в справедливости ЦПТ, можно, используя , рассчитать доверительные интервалы для средней арифметической, которые с заданной вероятностью накрывают истинное среднее или математическое ожидание.

Для установления верхней и нижней границы требуется знать параметры нормального распределения. Как правило, их нет, поэтому используют оценки: среднюю арифметическую и выборочную дисперсию . Повторюсь, такой способ дает хорошее приближение только при больших выборках. Когда выборки малые, часто рекомендуют использовать распределение Стьюдента. Не верьте! Распределение Стьюдента для средней бывает только тогда, когда исходные данные имеют нормальное распределение, то есть почти никогда. Поэтому лучше сразу поставить минимальную планку по количеству необходимых данных и использовать асимптотически корректные методы. Говорят, достаточно 30 наблюдений. Берите 50 – не ошибетесь.

T 1,2 – нижняя и верхняя граница доверительного интервала

– выборочное среднее арифметическое

s 0 – среднее квадратичное отклонение по выборке (несмещенное)

n – размер выборки

γ – доверительная вероятность (обычно равна 0,9, 0,95 или 0,99)

c γ =Φ -1 ((1+γ)/2) – обратное значение функции стандартного нормального распределения. По-простому говоря, это количество стандартных ошибок от средней арифметической до нижней или верхней границы (указанным трем вероятностями соответствуют значения 1,64, 1,96 и 2,58).

Суть формулы в том, что берется среднее арифметическое и далее от нее откладывается некоторое количество (с γ ) стандартных ошибок (s 0 /√n ). Все известно, бери и считай.

До массового использования ПЭВМ для получения значений функции нормального распределения и обратной ей использовали . Их и сейчас используют, но эффективнее обратиться к готовым формулам Excel. Все элементы из формулы выше ( , и ) можно легко рассчитать в Excel. Но есть и готовая формула для расчета доверительного интервала – ДОВЕРИТ.НОРМ . Ее синтаксис следующий.

ДОВЕРИТ.НОРМ(альфа;стандартное_откл;размер)

альфа – уровень значимости или доверительный уровень, который в принятых выше обозначениях равен 1- γ, т.е. вероятность того, что математическое ожидание окажется за пределами доверительного интервала. При доверительной вероятности 0,95, альфа равно 0,05 и т.д.

стандартное_откл – среднее квадратичное отклонение выборочных данных. Стандартную ошибку рассчитывать не нужно, Excel сам разделит на корень из n.

размер – размер выборки (n).

Результат функции ДОВЕРИТ.НОРМ – это второе слагаемое из формулы расчета доверительного интервала, т.е. полуинтервал. Соответственно, нижняя и верхняя точка – это среднее ± полученное значение.

Таким образом, можно построить универсальный алгоритм расчета доверительных интервалов для средней арифметической, который не зависит от распределения исходных данных. Платой за универсальность является его асимптотичность, т.е. необходимость использования относительно больших выборок. Однако в век современных технологий собрать нужное количество данных обычно не представляет трудностей.

Проверка статистических гипотез с помощью доверительного интервала

{module 111}

Одной из главных задач, решаемых в статистике, является . Ее суть вкратце такова. Выдвигается предположение, например, что матожидание генеральной совокупности равно какому-то значению. Затем строится распределение выборочных средних, которые могут наблюдаться при данном матожидании. Далее смотрят, в каком месте этого условного распределения находится реальная средняя. Если она выходит за допустимые пределы, то появление такого среднего очень маловероятно, а при однократном повторении эксперимента почти невозможно, что противоречит выдвинутой гипотезе, которая успешно отклоняется. Если же среднее не выходит за критический уровень, то гипотеза не отклоняется (но и не доказывается!).

Так вот с помощью доверительных интервалов, в нашем случае для матожидания, также можно проверять некоторые гипотезы. Это очень просто сделать. Допустим, средняя арифметическая по некоторой выборке равна 100. Проверяется гипотеза о том, что матожидание равно, допустим, 90. То есть, если поставить вопрос примитивно, то он звучит так: может ли такое быть, чтобы при истинном значении средней равной 90, наблюдаемая средняя оказалась равна 100?

Для ответа на этот вопрос дополнительно потребуется информация о среднем квадратичном отклонении и размере выборки. Допустим среднеквадратичное отклонение равно 30, а количество наблюдений 64 (чтобы легко извлечь корень). Тогда стандартная ошибка средней равна 30/8 или 3,75. Для расчета 95% доверительного интервала потребуется отложить в обе стороны от средней по две стандартные ошибки (точнее, по 1,96). Доверительный интервал получится примерно 100±7,5 или от 92,5 до 107,5.

Далее рассуждения следующие. Если проверяемое значение попадает в доверительный интервал, то оно не противоречит гипотезе, т.к. укладывается в пределы случайных колебаний (с вероятностью 95%). Если проверяемая точка выходит за пределы доверительного интервала, то вероятность такого события очень маленькая, во всяком случае ниже допустимого уровня. Значит, гипотезу отклоняют, как противоречащую наблюдаемым данным. В нашем случае гипотеза о матожидании находится за пределами доверительного интервала (проверяемое значение 90 не входит в интервал 100±7,5), поэтому ее следует отклонить. Отвечая на примитивный вопрос выше, следует сказать: нет не может, во всяком случае такое случается крайне редко. Часто при этом указывают конкретную вероятность ошибочного отклонения гипотезы (p-level), а не заданный уровень, по которому строился доверительный интервал, но об этом в другой раз.

Как видим, построить доверительный интервал для среднего (или математического ожидания) несложно. Главное, уловить суть, а дальше дело пойдет. На практике в большинстве случаев используются 95% доверительный интервал, который имеет в ширину примерно две стандартные ошибки по обе стороны от средней.

На этом пока все. Всех благ!

Построим в MS EXCEL доверительный интервал для оценки среднего значения распределения в случае известного значения дисперсии.

Разумеется, выбор уровня доверия полностью зависит от решаемой задачи. Так, степень доверия авиапассажира к надежности самолета, несомненно, должна быть выше степени доверия покупателя к надежности электрической лампочки.

Формулировка задачи

Предположим, что из генеральной совокупности имеющей взята выборка размера n. Предполагается, что стандартное отклонение этого распределения известно. Необходимо на основании этой выборки оценить неизвестное среднее значение распределения (μ, ) и построить соответствующий двухсторонний доверительный интервал .

Точечная оценка

Как известно из , статистика (обозначим ее Х ср ) является несмещенной оценкой среднего этой генеральной совокупности и имеет распределение N(μ;σ 2 /n).

Примечание : Что делать, если требуется построить доверительный интервал в случае распределения, которое не является нормальным? В этом случае на помощь приходит , которая гласит, что при достаточно большом размере выборки n из распределения не являющемся нормальным , выборочное распределение статистики Х ср будет приблизительно соответствовать нормальному распределению с параметрами N(μ;σ 2 /n).

Итак, точечная оценка среднего значения распределения у нас есть – это среднее значение выборки , т.е. Х ср . Теперь займемся доверительным интервалом.

Построение доверительного интервала

Обычно, зная распределение и его параметры, мы можем вычислить вероятность того, что случайная величина примет значение из заданного нами интервала. Сейчас поступим наоборот: найдем интервал, в который случайная величина попадет с заданной вероятностью. Например, из свойств нормального распределения известно, что с вероятностью 95%, случайная величина, распределенная по нормальному закону , попадет в интервал примерно +/- 2 от среднего значения (см. статью про ). Этот интервал, послужит нам прототипом для доверительного интервала .

Теперь разберемся,знаем ли мы распределение, чтобы вычислить этот интервал? Для ответа на вопрос мы должны указать форму распределения и его параметры.

Форму распределения мы знаем – это нормальное распределение (напомним, что речь идет о выборочном распределении статистики Х ср ).

Параметр μ нам неизвестен (его как раз нужно оценить с помощью доверительного интервала ), но у нас есть его оценка Х ср, вычисленная на основе выборки, которую можно использовать.

Второй параметр – стандартное отклонение выборочного среднего будем считать известным , он равен σ/√n.

Т.к. мы не знаем μ, то будем строить интервал +/- 2 стандартных отклонения не от среднего значения , а от известной его оценки Х ср . Т.е. при расчете доверительного интервала мы НЕ будем считать, что Х ср попадет в интервал +/- 2 стандартных отклонения от μ с вероятностью 95%, а будем считать, что интервал +/- 2 стандартных отклонения от Х ср с вероятностью 95% накроет μ – среднее генеральной совокупности, из которого взята выборка . Эти два утверждения эквивалентны, но второе утверждение нам позволяет построить доверительный интервал .

Кроме того, уточним интервал: случайная величина, распределенная по нормальному закону , с вероятностью 95% попадает в интервал +/- 1,960 стандартных отклонений, а не+/- 2 стандартных отклонения . Это можно рассчитать с помощью формулы =НОРМ.СТ.ОБР((1+0,95)/2) , см. файл примера Лист Интервал .

Теперь мы можем сформулировать вероятностное утверждение, которое послужит нам для формирования доверительного интервала :
«Вероятность того, что среднее генеральной совокупности находится от среднего выборки в пределах 1,960 «стандартных отклонений выборочного среднего» , равна 95%».

Значение вероятности, упомянутое в утверждении, имеет специальное название , который связан с уровнем значимости α (альфа) простым выражением уровень доверия =1 . В нашем случае уровень значимости α=1-0,95=0,05 .

Теперь на основе этого вероятностного утверждения запишем выражение для вычисления доверительного интервала :

где Z α/2 стандартного нормального распределения (такое значение случайной величины z , что P (z >=Z α/2 )=α/2 ).

Примечание : Верхний α/2-квантиль определяет ширину доверительного интервала в стандартных отклонениях выборочного среднего. Верхний α/2-квантиль стандартного нормального распределения всегда больше 0, что очень удобно.

В нашем случае при α=0,05, верхний α/2-квантиль равен 1,960. Для других уровней значимости α (10%; 1%) верхний α/2-квантиль Z α/2 можно вычислить с помощью формулы =НОРМ.СТ.ОБР(1-α/2) или, если известен уровень доверия , =НОРМ.СТ.ОБР((1+ур.доверия)/2) .

Обычно при построении доверительных интервалов для оценки среднего используют только верхний α /2-квантиль и не используют нижний α /2-квантиль . Это возможно потому, что стандартное нормальное распределение симметрично относительно оси х (плотность его распределения симметрична относительно среднего, т.е. 0 ). Поэтому, нет нужды вычислять нижний α/2-квантиль (его называют просто α/2-квантиль ), т.к. он равен верхнему α /2-квантилю со знаком минус.

Напомним, что, не смотря на форму распределения величины х, соответствующая случайная величина Х ср распределена приблизительно нормально N(μ;σ 2 /n) (см. статью про ). Следовательно, в общем случае, вышеуказанное выражение для доверительного интервала является лишь приближенным. Если величина х распределена по нормальному закону N(μ;σ 2 /n), то выражение для доверительного интервала является точным.

Расчет доверительного интервала в MS EXCEL

Решим задачу.
Время отклика электронного компонента на входной сигнал является важной характеристикой устройства. Инженер хочет построить доверительный интервал для среднего времени отклика при уровне доверия 95%. Из предыдущего опыта инженер знает, что стандартное отклонение время отклика составляет 8 мсек. Известно, что для оценки времени отклика инженер сделал 25 измерений, среднее значение составило 78 мсек.

Решение : Инженер хочет знать время отклика электронного устройства, но он понимает, что время отклика является не фиксированной, а случайной величиной, которая имеет свое распределение. Так что, лучшее, на что он может рассчитывать, это определить параметры и форму этого распределения.

К сожалению, из условия задачи форма распределения времени отклика нам не известна (оно не обязательно должно быть нормальным ). , этого распределения также неизвестно. Известно только его стандартное отклонение σ=8. Поэтому, пока мы не можем посчитать вероятности и построить доверительный интервал .

Однако, не смотря на то, что мы не знаем распределение времени отдельного отклика , мы знаем, что согласно ЦПТ , выборочное распределение среднего времени отклика является приблизительно нормальным (будем считать, что условия ЦПТ выполняются, т.к. размер выборки достаточно велик (n=25)).

Более того, среднее этого распределения равно среднему значению распределения единичного отклика, т.е. μ. А стандартное отклонение этого распределения (σ/√n) можно вычислить по формуле =8/КОРЕНЬ(25) .

Также известно, что инженером была получена точечная оценка параметра μ равная 78 мсек (Х ср). Поэтому, теперь мы можем вычислять вероятности, т.к. нам известна форма распределения (нормальное ) и его параметры (Х ср и σ/√n).

Инженер хочет знать математическое ожидание μ распределения времени отклика. Как было сказано выше, это μ равно математическому ожиданию выборочного распределения среднего времени отклика . Если мы воспользуемся нормальным распределением N(Х ср; σ/√n), то искомое μ будет находиться в интервале +/-2*σ/√n с вероятностью примерно 95%.

Уровень значимости равен 1-0,95=0,05.

Наконец, найдем левую и правую границу доверительного интервала .
Левая граница: =78-НОРМ.СТ.ОБР(1-0,05/2)*8/КОРЕНЬ(25)= 74,864
Правая граница: =78+НОРМ.СТ.ОБР(1-0,05/2)*8/КОРЕНЬ(25)=81,136

Левая граница: =НОРМ.ОБР(0,05/2; 78; 8/КОРЕНЬ(25))
Правая граница: =НОРМ.ОБР(1-0,05/2; 78; 8/КОРЕНЬ(25))

Ответ : доверительный интервал при уровне доверия 95% и σ =8 мсек равен 78+/-3,136 мсек.

В файле примера на листе Сигма известна создана форма для расчета и построения двухстороннего доверительного интервала для произвольных выборок с заданным σ и уровнем значимости .

Функция ДОВЕРИТ.НОРМ()

Если значения выборки находятся в диапазоне B20:B79 , а уровень значимости равен 0,05; то формула MS EXCEL:
=СРЗНАЧ(B20:B79)-ДОВЕРИТ.НОРМ(0,05;σ; СЧЁТ(B20:B79))
вернет левую границу доверительного интервала .

Эту же границу можно вычислить с помощью формулы:
=СРЗНАЧ(B20:B79)-НОРМ.СТ.ОБР(1-0,05/2)*σ/КОРЕНЬ(СЧЁТ(B20:B79))

Примечание : Функция ДОВЕРИТ.НОРМ() появилась в MS EXCEL 2010. В более ранних версиях MS EXCEL использовалась функция ДОВЕРИТ() .

Оценка доверительных интервалов

Цели обучения

Статистика рассматривает следующие две основные задачи :

    У нас есть некоторая оценка, построенная на выборочных данных, и мы хотим сделать некоторое вероятностное утверждение относительно того, где находится истинное значение оцениваемого параметра.

    У нас есть конкретная гипотеза, которую необходимо проверить на основе выборочных данных.

В данной теме мы рассматриваем первую задачу. Введем также определение доверительного интервала.

Доверительный интервал - это интервал, который строится вокруг оценочного значения параметра и показывает, где находится истинное значение оцениваемого параметра с априори заданной вероятностью.

Изучив материал данной темы, Вы:

    узнаете, что такое доверительный интервал оценки;

    научитесь классифицировать статистические задачи;

    освоите технику построения доверительных интервалов, как по статистическим формулам, так и с помощью программного инструментария;

    научитесь определять необходимые размеры выборок для достижения определенных параметров точности статистических оценок.

Распределения выборочных характеристик

Т-распределение

Как обсуждали выше распределение случайной величины близко к стандартизованному нормальному распределению с параметрами 0 и 1. Поскольку нам не известна величина σ, мы заменяем ее на некоторую оценку s . Величина уже имеет другое распределение, а именно или Распределение Стьюдента , которое определяется параметром n -1 (число степеней свободы). Это распределение близко к нормальному распределению (чем больше n , тем распределения ближе).

На рис. 95
представлено распределение Стьюдента с 30 степенями свободы. Как видно, оно весьма близко к нормальному распределению.

Аналогично функциям для работы с нормальным распределением НОРМРАСП и НОРМОБР имеются функции для работы с t-распределением - СТЬЮДРАСП (TDIST) и СТЬЮДРАСПОБР (TINV) . Пример использования этих функций можно посмотреть в файле СТЬЮДРАСП.XLS (шаблон и решение ) и на рис. 96
.

Распределения других характеристик

Как мы уже знаем, для определения точности оценивания математического ожидания нам необходимо t-распределение. Для оценивания других параметров, например, дисперсии, требуются другие распределения. Два из них - это F-распределение и x 2 -распределение .

Доверительный интервал для среднего значения

Доверительный интервал - это интервал, который строится вокруг оценочного значения параметра и показывает, где находится истинное значение оцениваемого параметра с априори заданной вероятностью.

Построение доверительного интервала для среднего значения происходит следующим образом :

Пример

В ресторане быстрого обслуживания планируется расширить ассортимент новым видом сэндвича. Для того чтобы оценить спрос на него, менеджер случайным образом планирует выбрать 40 посетителей из тех, кто уже попробовал его и предложить им оценить их отношение к новому продукту в баллах от 1 до 10. Менеджер хочет оценить ожидаемое количество баллов, которое получит новый продукт и построить 95%-й доверительный интервал этой оценки. Как это осуществить? (см. файл СЭНДВИЧ1.XLS (шаблон и решение ).

Решение

Для решения данной задачи можно воспользоваться . Результаты представлены на рис. 97
.

Доверительный интервал для суммарного значения

Иногда по выборочным данным требуется оценить не математическое ожидание, а общую сумму значений. Например, в ситуации с аудитором интерес может представлять оценка не средней величины счета, а суммы всех счетов.

Пусть N - общее количество элементов, n - размер выборки, T 3 - сумма значений в выборке, T" - оценка для суммы по всей совокупности, тогда , а доверительный интервал вычисляется по формуле , где s - оценка стандартного отклонения для выборки, - оценка среднего для выборки.

Пример

Допустим, некоторая налоговая служба хочет оценить размер суммарных налоговых возвратов для 10 000 налогоплательщиков. Налогоплательщик либо получает возврат, либо доплачивает налоги. Найдите 95%-й доверительный интервал для суммы возврата при условии, что размер выборки составляет 500 человек (см. файл СУММА ВОЗВРАТОВ.XLS (шаблон и решение ).

Решение

В StatPro нет специальной процедуры для этого случая, однако можно заметить, что границы можно получить из границ для среднего исходя из вышеприведенных формул (рис. 98
).

Доверительный интервал для пропорции

Пусть p - математическое ожидание доли клиентов, а р в - оценка этой доли, полученная по выборке размера n. Можно показать, что для достаточно больших распределение оценки будет близко к нормальному с математическим ожиданием p и стандартным отклонением . Стандартная ошибка оценки в данном случае выражается как , а доверительный интервал как .

Пример

В ресторане быстрого обслуживания планируется расширить ассортимент новым видом сэндвича. Для того чтобы оценить спрос на него, менеджер случайным образом выбрал 40 посетителей из тех, кто уже попробовал его и предложил им оценить их отношение к новому продукту в баллах от 1 до 10. Менеджер хочет оценить ожидаемую долю клиентов, которые оценивают новый продукт не менее чем в 6 баллов (он ожидает, что именно эти клиенты и будут потребителями нового продукта).

Решение

Первоначально создаем новый столбец по признаку 1, если оценка клиента была больше 6 баллов и 0 иначе (см. файл СЭНДВИЧ2.XLS (шаблон и решение ).

Способ 1

Подсчитывая количество 1, оцениваем долю, а далее используем формулы.

Значение z кр берется из специальных таблиц нормального распределения (например, 1,96 для 95%-го доверительного интервала).

Используя данный подход и конкретные данные для построения 95%-го интервала, получим следующие результаты (рис. 99
). Критическое значение параметра z кр равно 1,96. Стандартная ошибка оценки - 0,077. Нижняя граница доверительного интервала - 0,475. Верхняя граница доверительного интервала - 0,775. Таким образом, менеджер вправе полагать с 95%-й долей уверенности, что процент клиентов, оценивших новый продукт на 6 баллов и выше, будет между 47,5 и 77,5.

Способ 2

Данная задача допускает решение стандартными средствами StatPro . Для этого достаточно заметить, что доля в данном случае совпадает со средним значением столбца Тип . Далее применим StatPro/Statistical Inference/One-Sample Analysis для построения доверительного интервала среднего значения (оценки математического ожидания) для столбца Тип . Полученные в этом случае результат, будут весьма близок к результату 1-го способа (рис. 99).

Доверительный интервал для стандартного отклонения

В качестве оценки стандартного отклонения используется s (формула приведена в разделе 1). Функцией плотности распределения оценки s является функция хи-квадрат , которая, как и t-распределение, имеет n-1 степень свободы. Имеются специальные функции для работы с этим распределением ХИ2РАСП (CHIDIST) и ХИ2ОБР (CHIINV) .

Доверительный интервал в этом случае уже будет не симметричным. Условная схема границ представлена на рис. 100 .

Пример

Станок должен производить детали диаметром 10 см. Однако в силу различных обстоятельств происходят ошибки. Контролера по качеству волнуют два обстоятельства: во-первых, среднее значение должно равняться 10 см; во-вторых, даже в этом случае, если отклонения будут велики, то многие детали будут забракованы. Ежедневно он делает выборку из 50 деталей (см. файл КОНТРОЛЬ КАЧЕСТВА.XLS (шаблон и решение ). Какие выводы может дать такая выборка?

Решение

Построим 95%-й доверительные интервалы для среднего и для стандартного отклонения с помощью StatPro/Statistical Inference/ One-Sample Analysis (рис. 101
).

Далее, используя предположение о нормальном распределении диаметров, рассчитаем долю бракованных изделий, задавшись предельным отклонением 0,065. Используя возможности таблицы подстановки (случай двух параметров), построим зависимость доли брака от среднего значения и стандартного отклонения (рис. 102
).

Доверительный интервал для разности двух средних значений

Это одно из наиболее важных применений статистических методов. Примеры ситуаций.

    Менеджер магазина одежды хотел бы знать, на сколько больше или меньше тратит в магазине средняя женщина-покупатель, чем мужчина.

    Две авиакомпании летают аналогичными маршрутами. Организация-потребитель хотела бы сравнить разницу между среднеожидаемыми временами задержек рейсов по обеим авиакомпаниям.

    Компания рассылает купоны на отдельные виды товаров в одном городе и не рассылает в другом. Менеджеры хотят сравнить средние объемы покупок этих товаров в ближайшие два месяца.

    Автомобильный дилер часто имеет дело на презентациях с замужними парами. Чтобы понять их персональную реакцию на презентацию, пары часто опрашивают отдельно. Менеджер хочет оценить разницу в рейтингах указываемых мужчинами и женщинами.

Случай независимых выборок

Разность средних значений будет иметь t-распределение с n 1 + n 2 - 2 степенями свободы. Доверительный интервал для μ 1 - μ 2 выражается соотношением:

Данная задача допускает решение не только по вышеприведенным формулам, но и стандартными средствами StatPro . Для этого достаточно применить

Доверительный интервал для разности между пропорциями

Пусть - математическое ожидание долей. Пусть - их выборочные оценки, построенные по выборкам размера n 1 и n 2 соответственно. Тогда является оценкой для разности . Следовательно, доверительный интервал этой разности выражается как:

Здесь z кр является значением, полученным из нормального распределения по специальным таблицам (например, 1,96 для 95%-й доверительного интервала).

Стандартная ошибка оценки выражается в данном случае соотношением:

.

Пример

Магазин, готовясь к большой распродаже, предпринял следующие маркетинговые исследования. Были выбраны 300 лучших покупателей, которые в свою очередь были случайным образом поделены на две группы по 150 членов в каждой. Всем из отобранных покупателей были разосланы приглашения для участия в распродаже, но только для членов первой группы был приложен купон, дающий право на скидку 5%. В ходе распродажи покупки всех 300 отобранных покупателей фиксировались. Каким образом менеджер может интерпретировать полученные результаты и сделать заключение об эффективности предоставления купонов? (см. файл КУПОНЫ.XLS (шаблон и решение )).

Решение

Для нашего конкретного случая из 150 покупателей, получивших купон на скидку, 55 сделали покупку на распродаже, а среди 150, не получивших купон, покупку сделали только 35 (рис. 103
). Тогда значения выборочных пропорций соответственно 0,3667 и 0,2333. А выборочная разность между ними равна соответственно 0,1333. Полагая доверительный интервал 95%-м, находим по таблице нормального распределения z кр = 1,96. Вычисление стандартной ошибки выборочной разности равно 0,0524. Окончательно получаем, что нижняя граница 95%-го доверительного интервала равна 0,0307, а верхняя граница 0,2359 соответственно. Полученные результаты можно интерпретировать таким образом, что на каждых 100 покупателей, получивших купон со скидкой, можно ожидать от 3 до 23 новых покупателей. Однако надо иметь в виду, что этот вывод сам по себе еще не означает эффективности применения купонов (поскольку, предоставляя скидку, мы теряем в прибыли!). Продемонстрируем это на конкретных данных. Предположим, что средний размер покупки равен 400 руб., из которых 50 руб. есть прибыль магазина. Тогда ожидаемая прибыль на 100 покупателях, не получивших купон, равна:

50 0,2333 100 = 1166,50 руб.

Аналогичные вычисления для 100 покупателей получивших купон, дают:

30 0,3667 100 = 1100,10 руб.

Уменьшение средней прибыли до 30 объясняется тем, что, используя скидку, покупатели, получившие купон, в среднем будут делать покупку на 380 руб.

Таким образом, итоговый вывод говорит о неэффективности использования таких купонов в данной конкретной ситуации.

Замечание. Данная задача допускает решение стандартными средствами StatPro . Для этого достаточно свести данную задачу к задаче оценки разности двух средних способом, а далее применить StatPro/Statistical Inference/Two-Sample Analysis для построения доверительного интервала разности двух средних значений.

Управление длиной доверительного интервала

Длина доверительного интервала зависит от следующих условий :

    непосредственно данных (стандартное отклонение);

    уровня значимости;

    размера выборки.

Размер выборки для оценки среднего значения

Сначала рассмотрим задачу в общем случае. Обозначим данное нам значение половины длины доверительного интервала за В (рис. 104
). Нам известно, что доверительный интервал для среднего значения некоторой случайной величины X выражается как , где . Полагая:

и выражая n , получим .

К сожалению, точное значение дисперсии случайной величины X нам не известно. Кроме этого, нам неизвестно и значение t кр , так как оно зависит от n через количество степеней свободы. В данной ситуации мы можем поступить следующим образом. Вместо дисперсии s используем какую-либо оценку дисперсии, по каким-либо имеющимся реализациям исследуемой случайной величины. Вместо значения t кр используем значение z кр для нормального распределения. Это вполне допустимо, поскольку функции плотности распределений для нормального и t-распределения очень близки (за исключением случая малых n ). Таким образом, искомая формула принимает вид:

.

Поскольку формула дает, вообще говоря, нецелочисленные результат, в качестве искомого размера выборки берется округление с избытком результата.

Пример

В ресторане быстрого обслуживания планируется расширить ассортимент новым видом сэндвича. Для того чтобы оценить спрос на него, менеджер случайным образом планирует выбрать некоторое количество посетителей из тех, кто уже попробовал его, и предложить им оценить их отношение к новому продукту в баллах от 1 до 10. Менеджер хочет оценить ожидаемое количество баллов, которое получит новый продукт и построить 95%-й доверительный интервал этой оценки. При этом он хочет, чтобы половина ширины доверительного интервала не превышала 0,3. Какое количество посетителей ему необходимо опросить?

выглядит следующим образом:

Здесь р оц - оценка доли p , а В есть заданная половина длины доверительного интервала. Завышенное значение для n можно получить, используя значение р оц = 0,5. В этом случае длина доверительного интервала не будет превосходить заданного значения В при любом истинном значении p .

Пример

Пусть менеджер из предыдущего примера планирует оценить долю клиентов, отдавших предпочтение новому виду продукции. Он хочет построить 90%-й доверительный интервал, половина длины которого не превосходила бы 0,05. Сколько клиентов должно войти в случайную выборку?

Решение

В нашем случае значение z кр = 1,645. Поэтому искомое количество вычисляется как .

Если бы менеджер имел основания полагать, что искомое значение p составляет, например, примерно 0,3, то, подставляя это значение в вышеприведенную формулу, мы получили бы меньшее значение величины случайной выборки, а именно 228.

Формула для определения размеров случайной выборки в случае разности между двумя средними значениями записывается как:

.

Пример

Некоторая компьютерная компания имеет сервисный центр по обслуживанию клиентов. В последнее время увеличилось количество жалоб клиентов на плохое качество обслуживания. В сервисном центре в основном работают сотрудники двух типов: не имеющие большого опыта, но закончившие специальные подготовительные курсы, и имеющие большой практический опыт, но не закончившие специальных курсов. Компания хочет проанализировать нарекания клиентов за последние полгода и сравнить их средние количества, приходящиеся на каждую из двух групп сотрудников. Предполагается, что количества в выборках по обеим группам будут одинаковые. Какое количество сотрудников необходимо включить в выборку, чтобы получить 95%-й интервал с половиной длины не более 2?

Решение

Здесь σ оц есть оценка стандартного отклонения обеих случайных переменных в предположении, что они близки. Таким образом, в нашей задаче нам необходимо каким-то образом получить эту оценку. Это можно сделать, например, следующим образом. Просмотрев данные по нареканиям клиентов за последние полгода, менеджер может заметить, что на каждого сотрудника в основном приходится от 6 до 36 нареканий. Зная, что для нормального распределения практически все значения удалены от среднего значения не более чем на три стандартных отклонения, он может с определенным основанием полагать, что:

, откуда σ оц = 5.

Подставляя это значение в формулу, получаем .

Формула для определения размера случайной выборки в случае оценки разности между долями имеет вид:

Пример

Некоторая компания имеет две фабрики по производству аналогичной продукции. Менеджер компании хочет сравнить доли бракованной продукции на обеих фабриках. По имеющейся информации процент брака на обеих фабриках составляет от 3 до 5%. Предполагается построить 99%-й доверительный интервал с половиной длины не более 0,005 (или 0,5%). Какое количество изделий необходимо отобрать с каждой фабрики?

Решение

Здесь р 1оц и р 2оц являются оценками двух неизвестных долей брака на 1-й и 2-й фабрике. Если положить р 1оц = р 2оц = 0,5, то мы получим завышенное значение для n . Но поскольку в нашем случае мы имеем некоторую априорную информацию об этих долях, то мы берем верхнюю оценку этих долей, а именно 0,05. Получаем

Когда делается оценка некоторых параметров совокупности по выборочным данным, полезно дать не только точечную оценку параметра, но и указать доверительный интервал, который показывает, где может находиться точное значение оцениваемого параметра.

В данной главе мы также познакомились с количественными соотношениями, позволяющими строить такие интервалы для различных параметров; узнали способы управления длиной доверительного интервала.

Отметим также, что задачу оценки размеров выборки (задача планирования эксперимента) можно решить, используя стандартные средства StatPro , а именно StatPro/Statistical Inference/Sample Size Selection .

Статьи по теме