Шкала коэффициента вариации. Коэффициент вариации: формула и расчет в Excel и интерпретация результатов

ВВЕДЕНИЕ

Методические указания по выполнению практических и лабораторных работ по статистике содержат требования по их выполнению, порядок расчетов вручную и с использованием MS Excel, ППП Statistica.

Часть II методических указаний характеризует расчет показателей вариации: размаха вариации, квартилей и квартильного отклонения, среднего линейного отклонения, дисперсии и среднего квадратического отклонения, коэффициентов осцилляции, вариации, асимметрии, эксцесса и других.

Расчет показателей вариации наряду с построением интервальных и дискретных вариационных рядов и расчетом средних величин, представленными в части I методических указаний, имеет большое значение для анализа рядов распределения.

РАСЧЕТ ПОКАЗАТЕЛЕЙ ВАРИАЦИИ

Цель работы: получение практических навыков в расчете различных показателей (меры) вариации в зависимости от поставленных исследованием задач.

Порядок выполнения работы:

Определить вид и форму (простая или взвешенная) показателей вариации.

Сформулировать выводы.

Пример расчета показателей вариации

Определение вида и формы показателей вариации.

Показатели вариации делятся на две группы: абсолютные и относительные. К абсолютным относятся: размах вариации, квартильное отклонение, среднее линейное отклонение, дисперсия и среднее квадратическое отклонение. Относительными показателями являются коэффициенты осцилляции, вариации, относительное линейное отклонение и т. д.

Размах вариации (R) является наиболее простым измерителем вариации признака и определяется по следующей формуле:

где - наибольшее значение варьирующего признака;

Наименьшее значение варьирующего признака.

Квартильное отклонение (Q) - применяется для характеристики вариации признака в совокупности. Может использоваться вместо размаха вариации во избежание недостатков, связанных с использованием крайних значений.

Квартили - это значения признака в ранжированном ряду распределения, выбранные таким образом, что 25% единиц совокупности будут меньше по величине; 25% единиц будут заключены между и; 25% единиц будут заключены между и, и остальные 25% превосходят.

где - нижняя граница интервала, в котором находится первая квартиль;

Сумма накопленных частот интервалов, предшествующих интервалу, в котором находится первая квартиль;

Частота интервала, в котором находится первая квартиль.

где Ме - медиана ряда;

условные обозначения те же, что и для величины.

В симметричных или умеренно асимметричных распределениях Q2/3. Так как на квартильное отклонение не влияют отклонения всех значений признака, то его использование следует ограничить случаями, когда определение среднего квадратического отклонения затруднительно или невозможно.

Среднее линейное отклонение () представляет собой среднюю величину из абсолютных отклонений вариантов признака от их средней. Его можно рассчитать по формуле средней арифметической, как невзвешенной, так и взвешенной, в зависимости от отсутствия или наличия частот в ряду распределения.

(6) - невзвешенное среднее линейное отклонение,

(7) - взвешенное среднее линейное отклонение.

Дисперсия () - средний квадрат отклонений индивидуальных значений признака от их средней величины. Дисперсия вычисляется по формулам простой невзвешенной и взвешенной.

(8) - невзвешенная,

(9) - взвешенная.

Среднее квадратическое отклонение () - наиболее распространенный показатель вариации, представляет собой квадратный корень из значения дисперсии.

Размах вариации, квартильное отклонение, среднее линейное и квадратическое отклонения - величины именованные, имеют размерность осредняемого признака.

Для целей сравнения колеблемости различных признаков в одной и той же совокупности или же при сравнении колеблемости одного и того же признака в нескольких совокупностях вычисляются относительные показатели вариации. Базой для сравнения служит средняя арифметическая. Чаще всего относительные показатели выражаются в процентах и характеризуют не только сравнительную оценку вариации, но и дают характеристику однородности совокупности.

Коэффициент осцилляции рассчитывается по формуле:

Относительное линейное отклонение (линейный коэффициент вариации):

(13) или (14)

Коэффициент вариации:

Наиболее часто применяемый в статистике показатель относительной колеблемости - коэффициент вариации. Его используют не только для сравнительной оценки вариации, но и как характеристику однородности совокупности. Совокупность считается однородной, если коэффициент вариации не превышает 33% (Ефимова М.Р., Рябцев В.М. Общая теория статистики: Учебник М.: Финансы и статистика, 1991 г., стр. 105).

Для получения приблизительного представления о форме распределения строят графики распределения (полигон и гистограмму).

В практике статистического исследования приходится встречаться с самыми различными распределениями. При изучении однородных совокупностей имеем дело, как правило, с одновершинными распределениями. Многовершинность свидетельствует о неоднородности изучаемой совокупности, появление двух и более вершин говорит о необходимости перегруппировки данных с целью выделения более однородных групп. Выяснение общего характера распределения предполагает оценку степени его однородности, а также вычисление показателей асимметрии и эксцесса. Симметричным является распределение, в котором частоты любых двух вариантов, равноотстоящих в обе стороны от центра распределения, равны между собой. Для симметричных распределений средняя арифметическая, мода и медиана равны между собой. В связи с этим простейший показатель асимметрии основан на соотношении показателей центра распределения: чем больше разница между средними, тем больше асимметрия ряда.

Для сравнительного анализа степени асимметрии нескольких распределений рассчитывают относительный показатель As:

Величина показателя As может быть положительной и отрицательной. Положительная величина показателя указывает на наличие правосторонней асимметрии (правая ветвь относительно максимальной ординаты вытянута больше, чем левая). При правосторонней асимметрии между показателями центра распределения существует соотношение: . Отрицательный знак показателя асимметрии свидетельствует о наличии левосторонней асимметрии (Рисунок 1). Между показателями центра распределения в этом случае имеется такое соотношение: .

Рисунок 1. Распределение: 1 - с правосторонней асимметрией; 2 - с левосторонней асимметрией.

Другой показатель, предложенный шведским математиком Линдбергом, рассчитывают по формуле:

где П - процент тех значений признака, которые превосходят по величине среднюю арифметическую.

Наиболее точным и распространенным является показатель, основанный на определении центрального момента третьего порядка (в симметричном распределении его величина равна нулю):

где - центральный момент третьего порядка:

(19) - для несгруппированных данных;

(20) - для сгруппированных данных.

у - среднеквадратическое отклонение.

Применение этого показателя дает возможность не только определить величину асимметрии, но и ответить на вопрос о наличии или отсутствии асимметрии в распределении признака в генеральной совокупности. Оценка степени существенности этого показателя дается с помощью средней квадратической ошибки, которая зависит от объема наблюдений n и рассчитывается по формуле:

Если отношение, асимметрия существенна, и распределение признака в генеральной совокупности не является симметричным. Если отношение, асимметрия несущественна, ее наличие может быть объяснено влиянием различных случайных обстоятельств.

Для симметричных распределений рассчитывается показатель эксцесса (островершинности). Линдбергом предложен следующий показатель для оценки эксцесса:

где П - доля (%) количества вариантов, лежащих в интервале, равном половине среднего квадратического отклонения в ту или другую сторону от средней арифметической.

Наиболее точным является показатель, использующий центральный момент четвертого порядка:

где - центральный момент четвертого момента;

(24) - для несгруппированных данных;

(25) - для сгруппированных данных.

На рисунке 2 представлены два распределения: одно - островершинное (величина эксцесса положительная), второе - плосковершинное (величина эксцесса отрицательная). Эксцесс представляет собой выпад вершины эмпирического распределения вверх или вниз от вершины кривой нормального распределения. В нормальном распределении отношение.

Рисунок 2. Распределение: 1,4 - нормальное; 2 - островершинное; 3 - плосковершинное

Средняя квадратическая ошибка эксцесса рассчитывается по формуле:

где n - число наблюдений.

Если, то эксцесс существенен, если, то несущественен.

Оценка существенности показателей асимметрии и эксцесса позволяет сделать вывод о том, можно ли отнести данное эмпирическое исследование к типу кривых нормального распределения.

Рассмотрим методику исчисления показателей вариации.

Таблица 1. Данные об объеме продаж валюты нескольких отделений Центробанка.

Определить средний объем продаж валюты по совокупности отделений, рассчитать абсолютные и относительные показатели вариации.

Рассчитаем размах вариации:

R = = 24,3 - 10,2 = 14,1 млн. руб.

вариация дисперсия осцилляция вариация асимметрия эксцесс

Для определения отклонений значений признака от средней и их квадратов строим вспомогательную таблицу:

Таблица 2. Расчетная таблица

Среднее значение находим по формуле средней арифметической простой:

Среднее линейное отклонение:

Дисперсия:

Коэффициент осцилляции:

Коэффициент вариации:

Для расчета показателей формы распределения строим вспомогательную таблицу:

Таблица 3. Расчетная таблица


Таблица 4. Данные о товарообороте предприятий одной из отраслей промышленности.

Определить средний объем товарооборота, структурные средние, абсолютные и относительные показатели вариации и насколько фактическое распределение согласуется с нормальным (по показателям формы распределения).

Для расчета показателей построим вспомогательную таблицу.

Таблица 5. Расчетная таблица

Размах вариации:

Среднее значение находим по формуле средней арифметической взвешенной:

В интервальных рядах распределения мода определяется по формуле:

В нашем случае мода будет равна:

В интервальном вариационном ряду медиана определяется по формуле:

В нашем случае медиана будет равна:

Квартильное отклонение:

где и - соответственно первая и третья квартили распределения.

Квартили определяются по формулам:

Среднее линейное отклонение:

Дисперсия:

Среднее квадратическое отклонение:

Рассчитаем относительные показатели вариации.

Коэффициент осцилляции:

Относительное линейное отклонение:

Относительный показатель квартильной вариации:

Коэффициент вариации:

Определим показатели формы распределения:

Формулировка выводов.

Сформулируем выводы по рассчитанным показателям вариации примера 2, в котором представлен интервальный ряд распределения предприятий по объему товарооборота, млн. руб.

Размах вариации свидетельствует о том, что разница между максимальным и минимальным значением составляет 40 млн. руб. Средний объем товарооборота - 30 млн. руб. Чаще всего встречающееся значение объема товарооборота в рассматриваемой совокупности предприятий - 31,4 млн. руб., причем 50% (40 предприятий) имеют объем товарооборота менее 30,5 млн. руб., а 50% свыше.

Квартильное отклонение, равное 5, свидетельствует об умеренной асимметрии распределения, так как в симметричных или умеренно асимметричных распределениях (в рассматриваемом примере).

Среднее линейное и среднее квадратическое отклонения показывают, на сколько в среднем колеблется величина признака у единиц исследуемой совокупности. Так, средняя величина колеблемости объема товарооборота предприятий отраслей промышленности составляет: по среднему линейному отклонению - 6,5 млн. руб. (абсолютное отклонение); по среднему квадратическому отклонению - 8,1 млн. руб. Квадрат отклонений индивидуальных значений признака от их средней величины равен 65.

Разница между крайними значениями признака на 33,3% превышает среднее значение (= 133,3%).

Относительное линейное отклонение (= 21,7%) и относительный показатель квартильной вариации (= 16,4%) характеризуют однородность исследуемой совокупности, что подтверждает рассчитанный коэффициент вариации, равный 27% (V =27% меньше 33%).

По рассчитанным показателям асимметрии и эксцесса можно сделать вывод, что распределение плосковершинно (Ex < 0) и наблюдается левосторонняя асимметрия (As < 0). Асимметрия и эксцесс являются несущественными.

По данным выборочного обследования произведена группировка вкладчиков по размеру вклада в Сбербанке города:

Определите:

1) размах вариации;

2) средний размер вклада;

3) среднее линейное отклонение;

4) дисперсию;

5) среднее квадратическое отклонение;

6) коэффициент вариации вкладов.

Решение:

Данный ряд распределения содержит открытые интервалы. В таких рядах условно принимается величина интервала первой группы равна величине интервала последующей, а величина интервала последней группы равна величине интервала предыдущей.

Величина интервала второй группы равна 200, следовательно, и величина первой группы также равна 200. Величина интервала предпоследней группы равна 200, значит и последний интервал будет иметь величину, равную 200.

1) Определим размах вариации как разность между наибольшим и наименьшим значением признака:

Размах вариации размера вклада равен 1000 рублей.

2) Средний размер вклада определим по формуле средней арифметической взвешенной.

Предварительно определим дискретную величину признака в каждом интервале. Для этого по формуле средней арифметической простой найдём середины интервалов.

Среднее значение первого интервала будет равно:

второго - 500 и т. д.

Занесём результаты вычислений в таблицу:

Размер вклада, руб. Число вкладчиков, f Середина интервала, х xf
200-400 32 300 9600
400-600 56 500 28000
600-800 120 700 84000
800-1000 104 900 93600
1000-1200 88 1100 96800
Итого 400 - 312000

Средний размер вклада в Сбербанке города будет равен 780 рублей:

3) Среднее линейное отклонение есть средняя арифметическая из абсолютных отклонений отдельных значений признака от общей средней:

Порядок расчёта среднего линейонго отклонения в интервальном ряду распределения следующий:

1. Вычисляется средняя арифметическая взвешенная, как показано в п. 2).

2. Определяются абсолютные отклонения вариант от средней:

3. Полученные отклонения умножаются на частоты:

4. Находится сумма взвешенных отклонений без учёта знака:

5. Сумма взвешенных отклонений делится на сумму частот:

Удобно пользоваться таблицей расчётных данных:

Размер вклада, руб. Число вкладчиков, f Середина интервала, х
200-400 32 300 -480 480 15360
400-600 56 500 -280 280 15680
600-800 120 700 -80 80 9600
800-1000 104 900 120 120 12480
1000-1200 88 1100 320 320 28160
Итого 400 - - - 81280

Среднее линейное отклонение размера вклада клиентов Сбербанка составляет 203,2 рубля.

4) Дисперсия - это средняя арифметическая квадратов отклонений каждого значения признака от средней арифметической.

Расчёт дисперсии в интервальных рядах распределения производится по формуле:

Порядок расчёта дисперсии в этом случае следующий:

1. Определяют среднюю арифметическую взвешенную, как показано в п. 2).

2. Находят отклонения вариант от средней:

3. Возводят в квадрат отклонения каждой варианты от средней:

4. Умножают квадраты отклонений на веса (частоты):

5. Суммируют полученные произведения:

6. Полученная сумма делится на сумму весов (частот):

Расчёты оформим в таблицу:

Размер вклада, руб. Число вкладчиков, f Середина интервала, х
200-400 32 300 -480 230400 7372800
400-600 56 500 -280 78400 4390400
600-800 120 700 -80 6400 768000
800-1000 104 900 120 14400 1497600
1000-1200 88 1100 320 102400 9011200
Итого 400 - - - 23040000

Нам приходится сталкиваться с расчётом таких значений, как дисперсия, среднеквадратичное отклонение и, разумеется, коэффициент вариации. Именно расчёту последнего стоит уделить особое внимание. Очень важно, чтобы каждый новичок, который только приступает к работе с табличным редактором, мог быстро подсчитать относительную границу разброса значений.

Что такое коэффициент вариации и для чего он нужен?

Итак, как мне кажется, нелишним будет провести небольшой теоретический экскурс и разобраться в природе коэффициента вариации. Этот показатель необходим для отражения диапазона данных относительно среднего значения. Иными словами, он показывает отношение стандартного отклонения к среднему значению. Коэффициент вариации принято измерять в процентном выражении и отображать с его помощью однородность временного ряда.

Коэффициент вариации станет незаменимым помощником в том случае, когда вам необходимо будет сделать прогноз по данным из заданной выборки. Этот индикатор выделит главные ряды значений, которые будут наиболее полезными для последующего прогнозирования, а также очистит выборку от малозначительных факторов. Так, если вы видите, что значение коэффициента равно 0%, то с уверенностью заявляйте о том, что ряд является однородным, а значит, все значения в нём равны один с другим. В случае, если коэффициент вариации принимает значение, превышающее отметку в 33%, то это говорит о том, что вы имеете дело с неоднородным рядом, в котором отдельные значения существенно отличаются от среднего показателя выборки.

Как найти среднее квадратичное отклонение?

Поскольку для расчёта показателя вариации в Excel нам необходимо использовать среднее квадратичное отклонение, то вполне уместно будет выяснить, как нам посчитать этот параметр.

Из школьного курса алгебры мы знаем, что среднее квадратичное отклонение - это извлечённый из дисперсии квадратный корень, то есть этот показатель определяет степень отклонения конкретного показателя общей выборки от её среднего значения. С его помощью мы можем измерить абсолютную меру колебания изучаемого признака и чётко её интерпретировать.

Рассчитываем коэффициент в Экселе

К сожалению, в Excel не заложена стандартная формула , которая бы позволила рассчитать показатель вариации автоматически. Но это не значит, что вам придётся производить расчёты в уме. Отсутствие шаблона в «Строке формул» никоим образом не умаляет способностей Excel, потому вы вполне сможете заставить программу выполнить необходимый вам расчёт, прописав соответствующую команду вручную.

Для того чтобы рассчитать показатель вариации в Excel, необходимо вспомнить школьный курс математики и разделить стандартное отклонение на среднее значение выборки. То есть на деле формула выглядит следующим образом - СТАНДОТКЛОН(заданный диапазон данных)/СРЗНАЧ(заданный диапазон данных). Ввести эту формулу необходимо в ту ячейку Excel, в которой вы хотите получить нужный вам расчёт.

Не забывайте и о том, что поскольку коэффициент выражается в процентах, то ячейке с формулой нужно будет задать соответствующий формат. Сделать это можно следующим образом:

  1. Откройте вкладку «Главная».
  2. Найдите в ней категорию «Формат ячеек » и выберите необходимый параметр.

Как вариант, можно задать процентный формат ячейке при помощи клика по правой кнопке мыши на активированной клеточке таблицы. В появившемся контекстном меню, аналогично вышеуказанному алгоритму нужно выбрать категорию «Формат ячейки» и задать необходимое значение.

Выберите «Процентный», а при необходимости укажите число десятичных знаков

Возможно, кому-то вышеописанный алгоритм покажется сложным. На самом же деле расчёт коэффициента так же прост, как сложение двух натуральных чисел. Единожды выполнив эту задачу в Экселе, вы больше никогда не вернётесь к утомительным многосложным решениям в тетрадке.

Всё ещё не можете сделать качественное сравнение степени разброса данных? Теряетесь в масштабах выборки? Тогда прямо сейчас принимайтесь за дело и осваивайте на практике весь теоретический материал, который был изложен выше! Пусть статистический анализ и разработка прогноза больше не вызывают у вас страха и негатива. Экономьте свои силы и время вместе с

Полученные из опыта величины неизбежно содержат погрешности, обусловленные самыми разнообразными причинами. Среди них следует различать погрешности систематические и случайные. Систематические ошибки обусловливаются причинами, действующими вполне определенным образом, и могут быть всегда устранены или достаточно точно учтены. Случайные ошибки вызываются весьма большим числом отдельных причин, не поддающихся точному учету и действующих в каждом отдельном измерении различным образом. Эти ошибки невозможно совершенно исключить; учесть же их можно только в среднем, для чего необходимо знать законы, которым подчиняются случайные ошибки.

Будем обозначать измеряемую величину через А, а случайную ошибку при измерении х. Так как ошибка х может принимать любые значения, то она является непрерывной случайной величиной, которая вполне характеризуется своим законом распределения.

Наиболее простым и достаточно точно отображающим действительность (в подавляющем большинстве случаев) является так называемый нормальный закон распределения ошибок :

Этот закон распределения может быть получен из различных теоретических предпосылок, в частности, из требования, чтобы наиболее вероятным значением неизвестной величины, для которой непосредственным измерением получен ряд значений с одинаковой степенью точности, являлось среднее арифметическое этих значений. Величина 2 называется дисперсией данного нормального закона.

Среднее арифметическое

Определение дисперсии по опытным данным. Если для какой-либо величины А непосредственным измерением получено n значений a i с одинаковой степенью точности и если ошибки величины А подчинены нормальному закону распределения, то наиболее вероятным значением А будет среднее арифметическое :

a - среднее арифметическое,

a i - измеренное значение на i-м шаге.

Отклонение наблюдаемого значения (для каждого наблюдения) a i величины А от среднего арифметического : a i - a.

Для определения дисперсии нормального закона распределения ошибок в этом случае пользуются формулой:

2 - дисперсия,
a - среднее арифметическое,
n - число измерений параметра,

Среднеквадратическое отклонение

Среднеквадратическое отклонение показывает абсолютное отклонение измеренных значений от среднеарифметического . В соответствии с формулой для меры точности линейной комбинации средняя квадратическая ошибка среднего арифметического определяется по формуле:

, где


a - среднее арифметическое,
n - число измерений параметра,
a i - измеренное значение на i-м шаге.

Коэффициент вариации

Коэффициент вариации характеризует относительную меру отклонения измеренных значений от среднеарифметического :

, где

V - коэффициент вариации,
- среднеквадратическое отклонение,
a - среднее арифметическое.

Чем больше значение коэффициента вариации , тем относительно больший разброс и меньшая выравненность исследуемых значений. Если коэффициент вариации меньше 10%, то изменчивость вариационного ряда принято считать незначительной, от 10% до 20% относится к средней, больше 20% и меньше 33% к значительной и если коэффициент вариации превышает 33%, то это говорит о неоднородности информации и необходимости исключения самых больших и самых маленьких значений.

Среднее линейное отклонение

Один из показателей размаха и интенсивности вариации - среднее линейное отклонение (средний модуль отклонения) от среднего арифметического. Среднее линейное отклонение рассчитывается по формуле:

, где

_
a - среднее линейное отклонение,
a - среднее арифметическое,
n - число измерений параметра,
a i - измеренное значение на i-м шаге.

Для проверки соответствия исследуемых значений закону нормального распределения применяют отношение показателя асимметрии к его ошибке и отношение показателя эксцесса к его ошибке.

Показатель асимметрии

Показатель асимметрии (A) и его ошибка (m a) рассчитывается по следующим формулам:

, где

А - показатель асимметрии,
- среднеквадратическое отклонение,
a - среднее арифметическое,
n - число измерений параметра,
a i - измеренное значение на i-м шаге.

Показатель эксцесса

Показатель эксцесса (E) и его ошибка (m e) рассчитывается по следующим формулам:

, где

Вариация - это принятие единицами совокупности или группами различных, отичающихся друг от друга, значений знака. Вариация является результатом воздействия на единицу совокупности множества факторов. Синонимами терминация являются понятия изменение (изменчивость, вариативность’).

Вариация - одна из важнейших категорий статистической науки. Явления, подверженньие вариации, лежат в области исследования статистической науки, в то время как явления неизменные, статистические, постоянные в статистике не рассматриваются.

Практически все явления, имеющие естественный характер происхождения, подвержены изменчивости (например, химические процессы, изменчивость наследственных признаков у каждого человека и др.). Явления, а также ряд естественных законов могут иметь неизменный характер (например, минимальный размер заработной платы)

Необходимо подчеркнуть значение исследования вариации в статистической науке:

1 . Выявление измеычввости размеров явления дает возможность оценить степень зависимости изучаемого явления от других факторов, в свою очередь подверженньих изменчивости, или, другими словами, - оценить степень устойчивоти явленияк внешним воздействиям.

2. Вариация предполагает оценку однородности изучаемого явления, т. е. меру типичности, рассчитанной для этого явления средней величины.

Вариационным рядом называется последовательность различных вариант, записанных в возрастающем порядке вместе с соответствующими частотами.

В зависимости от типа признака различают дискретньие и интервальные вариационньие ряды. В зависимости от объема исходных данных и области допустимых значений одномерного количествснного признака, частотные распределения также подразделяются на дискретньие и интервальные. Если различных очень много (более 10-15), то эти варианты группируют вьибирая определенное число интервалов группировки и таким образом интервальное частотное распределение.

Первым шагом при построении интервального вариационого ряда является выбор определенного принципа, который дается в основу построения интервального ряда. Выбор этого принципа зависит от степени однородности рассматриваемой совокуности. Если совокупность однородна, то при построении ряда используют принцип равных интервалов. При этом вопрос однородности решается содержательным анализом изучаемых явлений.

Изменчивость явления в статистическом анализе отображается с помощью целого ряда характеристик, называемых системой показателей вариации . В нее входят:

абсолютные показатели вариации :

1) размах вариации;

2) средние величины (групповые и общие):

- степенные средние величины;

- структурные средние величины;


3) среднее линейное отклонение;

4) дисперсии (групповая, межгрулповая и общая) и среднее квадратическое отклонение;

относительные показатели вариации:

1) коэффициент осцилляции;

2) коэффициенты вариации (в том числе линейный);

3) коэффициенты детерминации (эмпирические и теоретические).

Размах вариации отражает пределы изменчивости признака или, другими словами, амплитуду вариации. Размах вариации рассчитывается как разность между максимальной величиной при знака (х) и минимальной величиной признака (х), т.е. по фор муле:

х - наибольшее значение признака;

х. - наименьшее значение признака.

Дисперсия - средний квадрат отклонений индивидуальньх значений признака от их средней величины:

Для вариационного ряда дисаерсия вычисляется по следующей формуле: (см. таблицу 2.)

Часто для исследования удобно представлять меру рассеяния в тех же единицах измерения, что и варианты. Тогда вместо дисперсии используют среднее квадратическое отклонение , которое является квадратным корнем из дисперсии, т.е. среднее квадратичное отклонение вычисляется по формуле: (см. таблицу 2)

Рассмотренные выше меры рассеявия (размах вариации, дисперсия, среднее квадратическое отклонение) являются абсолютными величинами, судить по ним о степени колеблимости признака не всегда возможно, в некоторых задачах необходимо использовать относительные показатели рассеяния. Таким показателем является коэффициент вариации (V), который представляет собой отношение среднего квадратичного отклонения к средней арифметической, выраженное в процентах:

Коэффициент вариации позволяет:

Сравнивать вариацию одного и того же признака у разных групп объектов;

Выявить степень различия одного и того же признака одной и той же группы объектов в разное время;

Сопоставить вариацию разных признаков у одних и тех групп объектов.

Если значение коэффициента вариации не превышает 33 то изучаемая совокупность считается однородной .

Рассмотрим на примере методику расчёта среднего квадратического отклонения и дисперсии признака.

ПРИМЕР 5 . В результате выборочной проверки расфасовки чая получены следующие данные:

Масса пачки чая, г. Число пачек чая, шт.

52 и выше 3

Исчислить среднюю массу пачки чая,среднее квадратическое отклонение,дисперсию признака.

Для расчёта используем формулы из таблицы 2.

Все расчёты желательно оформить в виде таблицы. Для определения середины интервала

В каждой группе,т.е. среднего значения,необходимо от интервального перейти к дискретному ряду. Величина интервала равна 1 (например,50 – 49 =1).Значит среднее значение для первой группы составит ((48 +49) /2 = 48,5 ;для второй и третьей групп соответственно 49,5 и 50,5 и т. д.

Масса Число Середина Х*f Х – Х (Х – Х) (Х – Х) * f

Статьи по теме