Решение задач с помощью уравнений. Проценты в математике

В этой статье Вы узнаете как решать задачи по математике, если не знаете с чего начать.

Часто при решении задач школьники "входят в ступор" - в голове туман, мысли куда-то разбежались, и кажется, что собрать их уже не возможно.

Я хочу на примере решения задачи из Открытого банка заданий показать, какие простые действия нужно сделать, чтобы собраться с мыслями и как решать задачи правильно.

Как решать задачи. Задание B13 (№ 26582)

Велосипедист выехал с постоянной скоростью из города А в город В, расстояние между которыми равно 98 км. На следующий день он отправился обратно со скоростью на 7 км/ч больше прежней. По дороге он сделал остановку на 7 часов. В результате он затратил на обратный путь столько же времени, сколько на путь из А в В. Найдите скорость велосипедиста на пути из А в В. Ответ дайте в км/ч.

1. Внимательно читаем задачу. Возможно, несколько раз.

2. Определяем, о каком процессе идет речь в задаче, и какие формулы описывают этот процесс. Выписываем эти формулы. В данном случае это задача на движение, и формула, которая описывает этот процесс S=vt.

3. Выписываем размерность каждой переменной, которая входит в состав уравнения:

  • S - расстояние - км
  • v - скорость - км/ч
  • t - время - ч

Знание размерности поможет нам при проверке получившихся формул.

4. Выписываем все числа, которые встречаются в условии задачи, пишем, что они обозначают и их размерность:

98 км - расстояние между городами,

7 км/ч - на столько скорость велосипедиста на обратном пути больше, чем скорость на пути из города А в город В,

7 часов - время остановки велосипедиста (это время он не ехал)

5. Ещё раз читаем вопрос задачи.

6. Решаем, какую величину мы примем за неизвестное. Удобно принимать за неизвестное ту величину, которую надо узнать в задаче. В данном случае это скорость велосипедиста на пути из А в В.

Итак: пусть скорость велосипедиста на пути из А в В равна х. Тогда, поскольку скорость велосипедиста на обратном пути на 7 км/ч больше, чем скорость на пути из города А в город В, то она равна x+7.

7. Составляем уравнение. Для этого выразим третью величину уравнения движения (время) через первые две. Тогда:

  • время, которое затратил велосипедист на дорогу из А в В равно 98/x,
  • а на дорогу из В в А - 98/(x+7)+7 - вспомним, что на пути обратно велосипедист сделал остановку на 7 часов, то есть его время в пути складывается из времени движение и времени стоянки.

Уравнение составляем для времени. Ещё раз читаем в условии задачи, что в нем говорится о времени: В результате он затратил на обратный путь столько же времени, сколько на путь из А в В. То есть время "туда " равно времени "обратно". Приравниваем время "туда" и время "обратно" Получим уравнение:

98/x=98/(x+7)+7.

Ещё раза проверяем размерность величин, которые входят в уравнение - нужно следить за тем, чтобы, например, не прибавлять к километрам часы.

8. Решаем уравнение. Теперь нужно сосредоточиться на решении уравнения. Для этого определим, какого типа это уравнение. Поскольку неизвестное находится в знаменателе дробей, это рациональное уравнение. Чтобы его решить, нужно перенести все слагаемые влево и привести дроби к общему знаменателю. Заметим, что числа 98 и 7 кратны 7.

Чтобы упростить решение, разделим обе части уравнения на 7. Получим уравнение: 14/x=14/(x+7)+1

После этого переносим все слагаемые влево, приводим к общему знаменателю, и приравниваем числитель к нулю.

Получаем в числителе: 14(x+7)-14x-x(x+7)=0 Раскроем скобки, приведем подобные слагаемые и решим квадратное уравнение.

Его корни: -14 и 7.

Число -14 не подходит по условию задачи: скорость должна быть положительной.

Ещё раз читаем вопрос задачи и соотносим его с величиной, которую мы нашли: за неизвестное мы приняли скорость велосипедиста на пути из А в В, и эту же величину требуется найти.

Ответ: 7 км/ч.

Как решать задачи. Итог

Заметим, что весь путь решения задачи мы разбили на маленькие кусочки, и на каждом участке сосредотачивались именно на обдумывании конкретного действия. И только после того, как это действие выполнялось, делали следующий шаг.

Когда не ясно что делать, нужно решить, какой маленький шаг можно сделать прямо сейчас, сделать его, а потом уже думать о следующем.

В курсе математики обязательно встречаются разного рода уравнения и задачи, но у многих они вызывают затруднения. Все дело в том, что необходимо отработать и автоматизировать эти процессы. Как научиться по математике, понимать их, вы узнаете в данной статье.

Простейшие задачи

Начнем с самого легкого. Чтобы получить правильный ответ на задачу, необходимо понять ее суть, поэтому тренироваться необходимо на простейших примерах для младшей школы. Как научиться решать задачи по математике, мы опишем вам в данном разделе на конкретных примерах.

Пример 1: Ваня и Дима ловили вместе рыбу, но у Димы клевало плохо. Какой улов у ребят? Дима поймал на 18 рыб меньше, чем весь улов, у одного из ребят на 14 рыб меньше, чем у другого.

Данный пример взят из курса математики за четвертый класс. Чтобы решить задачу, необходимо понять ее суть, точный вопрос, что в итоге необходимо найти. Этот пример решается в два простых действия:

18-14=4 (рыбы) - поймал Дима;

18+4=22 (рыбы) - поймали ребята.

Теперь можно смело записывать ответ. Вспоминаем главный вопрос. Какой общий улов? Ответ: 22 рыбы.

Летят воробей и орел, известно, что воробей за два часа пролетел четырнадцать километров, а орел за три часа пролетел 210 километров. Во сколько раз скорость орла больше.

Обратим внимание на то, что в этом примере два вопроса, записывая итог, не забываем указывать два ответа.

Переходим к решению. В этой задаче необходимо знать формулу: S=V*T. Она, наверняка, известна многим.

14/2=7 (км/ч) - скорость воробья;

210/3=70 (км/ч) - скорость орла;

70/7=10 - во столько раз скорость орла превосходит скорость воробья;

70-7=63 (км/ч) - на сколько скорость воробья меньше скорости орла.

Записываем ответ: в 10 раз скорость орла превосходит скорость воробья; на 63 км/ч орел быстрей воробья.

Более сложный уровень

Как научиться решать задачи по математике, используя таблицы? Все очень просто! Как правило, таблицы используются для упрощения и систематизации условия. Чтобы понять суть данного метода, разберем пример.

Перед вами книжный шкаф с двумя полками, на первой книг в три раза больше, чем на второй. Если с первой полки убрать восемь книг, а на вторую поставить 32, то их станет поровну. Ответьте на вопрос: сколько книг было первоначально на каждой полке?

Как научиться решать текстовые задачи по математике, сейчас все наглядно покажем. Для упрощения восприятия условия составим таблицу.

Теперь можем составить уравнение:

х=20 (книг) - было на второй полке;

20*3=60 (книг) - было на первой полке.

Ответ:60;20.

Вот наглядный пример решения задачи на составление уравнения с использованием вспомогательной таблицы. Она значительно упрощает восприятие.

Логика

В курсе математики встречаются и более сложные задания. Как научиться решать логические задачи по математике, мы рассмотрим в данном разделе. Для начала вчитываемся в условие, оно состоит из нескольких пунктов:

  1. Перед нами лист с числами от 1 до 2009.
  2. Мы вычеркнули все нечетные числа.
  3. Из оставшихся вычеркнули числа, стоящие на нечетных местах.
  4. Последнее действие выполняли до тех пор, пока не осталось одно число.

Вопрос: какое число осталось не зачеркнутым?

Как быстро научиться решать задачи по математике на логику? Для начала не спешим писать все эти числа и вычеркивать по одному, поверьте, это очень долгое и глупое занятие. Задачу данного типа несложно решить и в несколько действий. Предлагаем вместе поразмыслить над решением.

Ход решения

Давайте предположим, какие числа останутся после первого действия. Если исключить все нечетные, то остаются: 2, 4, 6, 8, ... , 2008. Заметим, что все они кратны двум.

Убираем числа на нечетных местах. Что у нас остается? 4, 8, 12, ... , 2008. Замечаем, что все они кратны четырем (то есть делятся без остатка на четыре).

Нетрудно догадаться о наших последующих действиях. Далее оставляем 16, затем 32, далее 64, 128, 256.

Когда мы дошли до чисел, кратных 512, то у нас остаются всего три числа: 512, 1024, 1536. Следующим этапом оставляем число, кратное 1024, оно в нашем списке одно: 1024.

Как видите, задача решается элементарно, без особых усилий и массы потраченного времени.

Олимпиада

В школе существует такое понятие, как олимпиада. Туда попадают дети с особыми навыками. Как научиться решать олимпиадные задачи по математике, и что они собой представляют, рассмотрим далее.

Олимпиада, 5 класс. Пример.

На нашей ферме живет девять свиней, они за три дня съедают двадцать семь мешков корма. Сосед фермер попросил оставить пять своих свиней на пять дней. Сколько же нужно корма пяти свиньям на пять дней?

Олимпиада, 6 класс. Пример.

Большой орел пролетает три метра за одну секунду, а орленок один метр за полсекунды. Они одновременно стартовали с одной вершины на другую. Сколько взрослому орлу придется ждать своего детеныша, если расстояние между вершинами 240 метров?

Решения

В прошлом разделе мы рассмотрели две простых олимпиадных задачи за пятый и шестой класс. Как научиться решать задачи по математике олимпиадного уровня, предлагаем рассмотреть прямо сейчас.

Начнем с пятого класса. Что нужно нам для начала? Узнать сколько мешков съедают девять поросят за один день, для этого сделаем простейшее вычисление: 27:3=9. Мы нашли количество мешков для девяти поросят на один день.

Теперь вычисляем сколько необходимо мешков одному поросенку на один день: 9:9=1. Вспоминаем, что говорилось в условии, сосед оставил пять свиней на пять дней, следовательно, нам необходимо 5*5=25 (мешков корма). Ответ: 25 мешков.

Решение задачи за шестой класс:

240:3=80 секунд летел взрослый орел;

орленок за 1 секунду пролетает два метра, следовательно: 80*2=160 метров пролетит орленок за 80 секунд;

240-180=80 метров останется пролететь орленку, когда взрослый орел уже приземлился на скалу;

80:2=40 секунд еще потребуется орленку, чтобы долететь до взрослого орла.

Понятие процент встречается в нашей жизни слишком часто, поэтому очень важно знать, как решать задачи на проценты. В принципе, это дело не сложное, главное, понять принцип работы с процентами.

Что такое процент

Мы оперируем с понятием 100 процентов, и соответственно, один процент это сотая доля определенного числа. И все счисления ведутся уже исходя из этого соотношения.

Например, 1% от 50 это 0,5, 15 от 700 это 7.

Как решать

  1. Зная, что один процент это одна сотая от представленного числа, можно найти любое количество требуемых процентов. Для того чтобы было нагляднее, попробуем найти 6 процентов от числа 800. Делается это просто.
    • Сначала находим один процент. Для этого 800 делим на 100. Получается 8.
    • Теперь этот самый один процент, то есть 8, умножаем на нужное нам количество процентов, то есть на 6. Получается 48.
    • Закрепим результат повторением.

    15% от 150. Решение: 150/100*15=22.

    28% от 1582. Решение: 1582/100*28=442.

  2. Бывают другие задачки, когда вам даются величины, а вам нужно найти проценты. Например, вам известно, что в магазине 5 алых роз из 75 белых, и вам нужно узнать, каков процент алых. Если мы не знаем этот процент, значит, обозначим его как х.

    Для этого есть формула: 75 – 100%

    В этой формуле цифры умножаются крест на крест, то есть х=5*100/75. Получается, что х=6% Значит процент алых роз составляет 6%.

  3. Существует еще один тип задач на проценты, когда вам надо найти на сколько процентов одно число больше или меньше другого. Как решать задачи с процентами в этом случае?

    В классе учится 30 человек, из них 16 мальчиков. Вопрос, на сколько процентов мальчиков больше, чем девочек. Для начала необходимо сосчитать, какой процент составляют учащиеся мальчики, затем нужно узнать, сколько процентов девочек. А уж в конце найти разницу.

    Итак, приступим. Составляем пропорцию 30 уч. – 100%

    16 уч. –х %

    Теперь считаем. Х=16*100/30, х=53,4 % от всех учащихся в классе составляют мальчики.

    Теперь найдем процент девочек в этом же классе. 100-53,4=46,6 %

Осталось теперь только найти разницу. 53,4-46,6=6,8% . Ответ: мальчиков больше, чем девочек на 6,8%.

Основные моменты в решении процентов

Итак, чтобы у вас не было проблем с тем, как решать задачи на проценты, запомните несколько основных правил:

  1. Чтобы не запутаться в задачках на проценты, всегда будьте бдительны: переходите от конкретных величин к процентам и наоборот, если понадобится. Главное, никогда не путать одно с другим.
  2. Будьте внимательны, когда высчитываете проценты. Важно знать, от какой конкретной величину нужно считать. При последовательных изменениях величин процент вычисляется от последнего значения.
  3. Прежде, чем записать ответ еще раз прочитайте всю задачу, ведь может быть так, что вы нашли только промежуточный ответ, и вам необходимо выполнить еще одно или пару действий.

Таким образом, решение задач с процентами не такое уж и сложное дело, главное в нем внимательность и аккуратность, как впрочем, и во всей математике. И не забывайте, что для совершенствования любого навыка необходима практика. Так что решайте больше, и все у вас будет хорошо или даже отлично.

Среднее общее образование

Линия УМК Г. К. Муравина. Алгебра и начала математического анализа (10-11) (углуб.)

Линия УМК Мерзляка. Алгебра и начала анализа (10-11) (У)

Математика

Подготовка к ЕГЭ по математике (профильный уровень): задания, решения и объяснения

Разбираем задания и решаем примеры с учителем

Экзаменационная работа профильного уровня длится 3 часа 55 минут (235 минут).

Минимальный порог - 27 баллов.

Экзаменационная работа состоит из двух частей, которые различаются по содержанию, сложности и числу заданий.

Определяющим признаком каждой части работы является форма заданий:

  • часть 1 содержит 8 заданий (задания 1-8) с кратким ответом в виде целого числа или конечной десятичной дроби;
  • часть 2 содержит 4 задания (задания 9-12) с кратким ответом в виде целого числа или конечной десятичной дроби и 7 заданий (задания 13–19) с развернутым ответом (полная запись решения с обоснованием выполненных действий).

Панова Светлана Анатольевна , учитель математики высшей категории школы, стаж работы 20 лет:

«Для того чтобы получить школьный аттестат, выпускнику необходимо сдать два обязательных экзамена в форме ЕГЭ, один из которых математика. В соответствии с Концепцией развития математического образования в Российской Федерации ЕГЭ по математике разделен на два уровня: базовый и профильный. Сегодня мы рассмотрим варианты профильного уровня».

Задание № 1 - проверяет у участников ЕГЭ умение применять навыки, полученные в курсе 5 - 9 классов по элементарной математике, в практической деятельности. Участник должен владеть вычислительными навыками, уметь работать с рациональными числами, уметь округлять десятичные дроби, уметь переводить одни единицы измерения в другие.

Пример 1. В квартире, где проживает Петр, установили прибор учета расхода холодной воды (счетчик). Первого мая счетчик показывал расход 172 куб. м воды, а первого июня - 177 куб. м. Какую сумму должен заплатить Петр за холодную воду за май, если цена 1 куб. м холодной воды составляет 34 руб 17 коп? Ответ дайте в рублях.

Решение:

1) Найдем количество потраченной воды за месяц:

177 - 172 = 5 (куб м)

2) Найдем сколько денег заплатят за потраченную воду:

34,17 · 5 = 170,85 (руб)

Ответ: 170,85.


Задание № 2 -является одним из простейших заданий экзамена. С ней успешно справляется большинство выпускников, что свидетельствует о владении определением понятия функции. Тип задания № 2 по кодификатору требований - это задание на использования приобретённых знаний и умений в практической деятельности и повседневной жизни. Задание № 2 состоит из описания с помощью функций различных реальных зависимостей между величинами и интерпретация их графиков. Задание № 2 проверяет умение извлекать информацию, представленную в таблицах, на диаграммах, графиках. Выпускникам нужно уметь определять значение функции по значению аргумента при различных способах задания функции и описывать поведение и свойства функции по её графику. Также необходимо уметь находить по графику функции наибольшее или наименьшее значение и строить графики изученных функций. Допускаемые ошибки носят случайный характер в чтении условия задачи, чтении диаграммы.

#ADVERTISING_INSERT#

Пример 2. На рисунке показано изменение биржевой стоимости одной акции добывающей компании в первой половине апреля 2017 года. 7 апреля бизнесмен приобрёл 1000 акций этой компании. 10 апреля он продал три четверти купленных акций, а 13 апреля продал все оставшиеся. Сколько потерял бизнесмен в результате этих операций?


Решение:

2) 1000 · 3/4 = 750 (акций) - составляют 3/4 от всех купленных акций.

6) 247500 + 77500 = 325000 (руб) - бизнесмен получил после продажи 1000 акций.

7) 340000 – 325000 = 15000 (руб) - потерял бизнесмен в результате всех операций.

Ответ: 15000.

Задание № 3 - является заданием базового уровня первой части, проверяет умения выполнять действия с геометрическими фигурами по содержанию курса «Планиметрия». В задании 3 проверяется умение вычислять площадь фигуры на клетчатой бумаге, умение вычислять градусные меры углов, вычислять периметры и т.п.

Пример 3. Найдите площадь прямоугольника, изображенного на клетчатой бумаге с размером клетки 1 см на 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.

Решение: Для вычисления площади данной фигуры можно воспользоваться формулой Пика:

Для вычисления площади данного прямоугольника воспользуемся формулой Пика:

S = В +

Г
2
где В = 10, Г = 6, поэтому

S = 18 +

6
2
Ответ: 20.

Читайте также: ЕГЭ по физике: решение задач о колебаниях

Задание № 4 - задача курса «Теория вероятностей и статистика». Проверяется умение вычислять вероятность события в простейшей ситуации.

Пример 4. На окружности отмечены 5 красных и 1 синяя точка. Определите, каких многоугольников больше: тех, у которых все вершины красные, или тех, у которых одна из вершин синяя. В ответе укажите, на сколько одних больше, чем других.

Решение: 1) Воспользуемся формулой числа сочетаний из n элементов по k :

у которых все вершины красные.

3) Один пятиугольник, у которого все вершины красные.

4) 10 + 5 + 1 = 16 многоугольников, у которых все вершины красные.

у которых вершины красные или с одной синей вершиной.

у которых вершины красные или с одной синей вершиной.

8) Один шестиуголник, у которого вершины красные с одной синей вершиной.

9) 20 + 15 + 6 + 1 = 42 многоуголника, у которых все вершины красные или с одной синей вершиной.

10) 42 – 16 = 26 многоугольников, в которых используется синяя точка.

11) 26 – 16 = 10 многоугольников – на сколько многоугольников, у которых одна из вершин - синяя точка, больше, чем многоугольников, у которых все вершины только красные.

Ответ: 10.

Задание № 5 - базового уровня первой части проверяет умения решать простейшие уравнения (иррациональные, показательные, тригонометрические, логарифмические).

Пример 5. Решите уравнение 2 3 + x = 0,4 · 5 3 + x .

Решение. Разделим обе части данного уравнения на 5 3 + х ≠ 0, получим

2 3 + x = 0,4 или 2 3 + х = 2 ,
5 3 + х 5 5

откуда следует, что 3 + x = 1, x = –2.

Ответ: –2.

Задание № 6 по планиметрии на нахождение геометрических величин (длин, углов, площадей), моделирование реальных ситуаций на языке геометрии. Исследование построенных моделей с использованием геометрических понятий и теорем. Источником трудностей является, как правило, незнание или неверное применение необходимых теорем планиметрии.

Площадь треугольника ABC равна 129. DE – средняя линия, параллельная стороне AB . Найдите площадь трапеции ABED .


Решение. Треугольник CDE подобен треугольнику CAB по двум углам, так как угол при вершине C общий, угол СDE равен углу CAB как соответственные углы при DE || AB секущей AC . Так как DE – средняя линия треугольника по условию, то по свойству средней линии | DE = (1/2)AB . Значит, коэффициент подобия равен 0,5. Площади подобных фигур относятся как квадрат коэффициента подобия, поэтому

Следовательно, S ABED = S ΔABC S ΔCDE = 129 – 32,25 = 96,75.

Задание № 7 - проверяет применение производной к исследованию функции. Для успешного выполнения необходимо содержательное, не формальное владение понятием производной.

Пример 7. К графику функции y = f (x ) в точке с абсциссой x 0 проведена касательная, которая перпендикулярна прямой, проходящей через точки (4; 3) и (3; –1) этого графика. Найдите f ′(x 0).

Решение. 1) Воспользуемся уравнением прямой, проходящей через две заданные точки и найдём уравнение прямой, проходящей через точки (4; 3) и (3; –1).

(y y 1)(x 2 – x 1) = (x x 1)(y 2 – y 1)

(y – 3)(3 – 4) = (x – 4)(–1 – 3)

(y – 3)(–1) = (x – 4)(–4)

y + 3 = –4x + 16| · (–1)

y – 3 = 4x – 16

y = 4x – 13, где k 1 = 4.

2) Найдём угловой коэффициент касательной k 2 , которая перпендикулярна прямой y = 4x – 13, где k 1 = 4, по формуле:

3) Угловой коэффициент касательной – производная функции в точке касания. Значит, f ′(x 0) = k 2 = –0,25.

Ответ: –0,25.

Задание № 8 - проверяет у участников экзамена знания по элементарной стереометрии, умение применять формулы нахождения площадей поверхностей и объемов фигур, двугранных углов, сравнивать объемы подобных фигур, уметь выполнять действия с геометрическими фигурами, координатами и векторами и т.п.

Объём куба, описанного около сферы, равен 216. Найдите радиус сферы.


Решение. 1) V куба = a 3 (где а – длина ребра куба), поэтому

а 3 = 216

а = 3 √216

2) Так как сфера вписана в куб, значит, длина диаметра сферы равна длине ребра куба, поэтому d = a , d = 6, d = 2R , R = 6: 2 = 3.

Задание № 9 - требует от выпускника навыков преобразования и упрощения алгебраических выражений. Задание № 9 повышенного уровня сложности с кратким ответом. Задания из раздела «Вычисления и преобразования» в ЕГЭ подразделяются на несколько видов:

    преобразования числовых рациональных выражений;

    преобразования алгебраических выражений и дробей;

    преобразования числовых/буквенных иррациональных выражений;

    действия со степенями;

    преобразование логарифмических выражений;

  1. преобразования числовых/буквенных тригонометрических выражений.

Пример 9. Вычислите tgα, если известно, что cos2α = 0,6 и

< α < π.
4

Решение. 1) Воспользуемся формулой двойного аргумента: cos2α = 2 cos 2 α – 1 и найдём

tg 2 α = 1 – 1 = 1 – 1 = 10 – 1 = 5 – 1 = 1 1 – 1 = 1 = 0,25.
cos 2 α 0,8 8 4 4 4

Значит, tg 2 α = ± 0,5.

3) По условию

< α < π,
4

значит, α – угол II четверти и tgα < 0, поэтому tgα = –0,5.

Ответ: –0,5.

#ADVERTISING_INSERT# Задание № 10 - проверяет у учащихся умение использовать приобретенные раннее знания и умения в практической деятельности и повседневной жизни. Можно сказать, что это задачи по физике, а не по математике, но все необходимые формулы и величины даны в условии. Задачи сводятся к решению линейного или квадратного уравнения, либо линейного или квадратного неравенства. Поэтому необходимо уметь решать такие уравнения и неравенства, и определять ответ. Ответ должен получиться в виде целого числа или конечной десятичной дроби.

Два тела массой m = 2 кг каждое, движутся с одинаковой скоростью v = 10 м/с под углом 2α друг к другу. Энергия (в джоулях), выделяющаяся при их абсолютно неупругом соударении определяется выражением Q = mv 2 sin 2 α. Под каким наименьшим углом 2α (в градусах) должны двигаться тела, чтобы в результате соударения выделилось не менее 50 джоулей?
Решение. Для решения задачи нам необходимо решить неравенство Q ≥ 50, на интервале 2α ∈ (0°; 180°).

mv 2 sin 2 α ≥ 50

2· 10 2 sin 2 α ≥ 50

200 · sin 2 α ≥ 50

Так как α ∈ (0°; 90°), то будем решать только

Изобразим решение неравенства графически:


Так как по условию α ∈ (0°; 90°), значит 30° ≤ α < 90°. Получили, что наименьший угол α равен 30°, тогда наименьший угол 2α = 60°.

Задание № 11 - является типовым, но оказывается непростым для учащихся. Главным источником затруднений является построение математической модели (составление уравнения). Задание № 11 проверяет умение решать текстовые задачи.

Пример 11. На весенних каникулах 11-классник Вася должен был решить 560 тренировочных задач для подготовки к ЕГЭ. 18 марта в последний учебный день Вася решил 5 задач. Далее ежедневно он решал на одно и то же количество задач больше по сравнению с предыдущим днём. Определите, сколько задач Вася решил 2 апреля в последний день каникул.

Решение: Обозначим a 1 = 5 – количество задач, которые Вася решил 18 марта, d – ежедневное количество задач, решаемых Васей, n = 16 – количество дней с 18 марта по 2 апреля включительно, S 16 = 560 – общее количество задач, a 16 – количество задач, которые Вася решил 2 апреля. Зная, что ежедневно Вася решал на одно и то же количество задач больше по сравнению с предыдущим днём, то можно использовать формулы нахождения суммы арифметической прогрессии:

560 = (5 + a 16) · 8,

5 + a 16 = 560: 8,

5 + a 16 = 70,

a 16 = 70 – 5

a 16 = 65.

Ответ: 65.

Задание № 12 - проверяют у учащихся умение выполнять действия с функциями, уметь применять производную к исследованию функции.

Найти точку максимума функции y = 10ln(x + 9) – 10x + 1.

Решение: 1) Найдем область определения функции: x + 9 > 0, x > –9, то есть x ∈ (–9; ∞).

2) Найдем производную функции:

4) Найденная точка принадлежит промежутку (–9; ∞). Определим знаки производной функции и изобразим на рисунке поведение функции:


Искомая точка максимума x = –8.

Скачать бесплатно рабочую программу по математике к линии УМК Г.К. Муравина, К.С. Муравина, О.В. Муравиной 10-11 Скачать бесплатно методические пособия по алгебре

Задание № 13 -повышенного уровня сложности с развернутым ответом, проверяющее умение решать уравнения, наиболее успешно решаемое среди заданий с развернутым ответом повышенного уровня сложности.

а) Решите уравнение 2log 3 2 (2cosx ) – 5log 3 (2cosx ) + 2 = 0

б) Найдите все корни этого уравнения, принадлежащие отрезку .

Решение: а) Пусть log 3 (2cosx ) = t , тогда 2t 2 – 5t + 2 = 0,


log 3 (2cosx ) = 2
2cosx = 9
cosx = 4,5 ⇔ т.к. |cosx | ≤ 1,
log 3 (2cosx ) = 1 2cosx = √3 cosx = √3
2 2
то cosx = √3
2

x = π + 2πk
6
x = – π + 2πk , k Z
6

б) Найдём корни, лежащие на отрезке .


Из рисунка видно, что заданному отрезку принадлежат корни

11π и 13π .
6 6
Ответ: а) π + 2πk ; – π + 2πk , k Z ; б) 11π ; 13π .
6 6 6 6
Задание № 14 -повышенного уровня относится к заданиям второй части с развернутым ответом. Задание проверяет умения выполнять действия с геометрическими фигурами. Задание содержит два пункта. В первом пункте задание нужно доказать, а во втором пункте вычислить.

Диаметр окружности основания цилиндра равен 20, образующая цилиндра равна 28. Плоскость пересекает его основания по хордам длины 12 и 16. Расстояние между хордами равно 2√197.

а) Докажите, что центры оснований цилиндра лежат по одну сторону от этой плоскости.

б) Найдите угол между этой плоскостью и плоскостью основания цилиндра.

Решение: а) Хорда длиной 12 находится на расстоянии = 8 от центра окружности основания, а хорда длиной 16, аналогично, – на расстоянии 6. Поэтому расстояние между их проекциями на плоскость, параллельную основаниям цилиндров, составляет либо 8 + 6 = 14, либо 8 − 6 = 2.

Тогда расстояние между хордами составляет либо

= = √980 = = 2√245

= = √788 = = 2√197.

По условию реализовался второй случай, в нем проекции хорд лежат по одну сторону от оси цилиндра. Значит, ось не пересекает данную плоскость в пределах цилиндра, то есть основания лежат по одну сторону от нее. Что требовалось доказать.

б) Обозначим центры оснований за О 1 и О 2 . Проведем из центра основания с хордой длины 12 серединный перпендикуляр к этой хорде (он имеет длину 8, как уже отмечалось) и из центра другого основания - к другой хорде. Они лежат в одной плоскости β, перпендикулярной этим хордам. Назовем середину меньшей хорды B, большей A и проекцию A на второе основание - H (H ∈ β). Тогда AB,AH ∈ β и значит, AB,AH перпендикулярны хорде, то есть прямой пересечения основания с данной плоскостью.

Значит, искомый угол равен

∠ABH = arctg AH = arctg 28 = arctg14.
BH 8 – 6

Задание № 15 - повышенного уровня сложности с развернутым ответом, проверяет умение решать неравенства, наиболее успешно решаемое среди заданий с развернутым ответом повышенного уровня сложности.

Пример 15. Решите неравенство |x 2 – 3x | · log 2 (x + 1) ≤ 3x x 2 .

Решение: Областью определения данного неравенства является интервал (–1; +∞). Рассмотри отдельно три случая:

1) Пусть x 2 – 3x = 0, т.е. х = 0 или х = 3. В этом случае данное неравенство превращается в верное, следовательно, эти значения входят в решение.

2) Пусть теперь x 2 – 3x > 0, т.е. x ∈ (–1; 0) ∪ (3; +∞). При этом данное неравенство можно переписать в виде (x 2 – 3x ) · log 2 (x + 1) ≤ 3x x 2 и разделить на положительное выражение x 2 – 3x . Получим log 2 (x + 1) ≤ –1, x + 1 ≤ 2 –1 , x ≤ 0,5 –1 или x ≤ –0,5. Учитывая область определения, имеем x ∈ (–1; –0,5].

3) Наконец, рассмотрим x 2 – 3x < 0, при этом x ∈ (0; 3). При этом исходное неравенство перепишется в виде (3x x 2) · log 2 (x + 1) ≤ 3x x 2 . После деления на положительное выражение 3x x 2 , получим log 2 (x + 1) ≤ 1, x + 1 ≤ 2, x ≤ 1. Учитывая область, имеем x ∈ (0; 1].

Объединяя полученные решения, получаем x ∈ (–1; –0.5] ∪ ∪ {3}.

Ответ: (–1; –0.5] ∪ ∪ {3}.

Задание № 16 - повышенного уровня относится к заданиям второй части с развернутым ответом. Задание проверяет умения выполнять действия с геометрическими фигурами, координатами и векторами. Задание содержит два пункта. В первом пункте задание нужно доказать, а во втором пункте вычислить.

В равнобедренном треугольнике ABC с углом 120° при вершине A проведена биссектриса BD. В треугольник ABC вписан прямоугольник DEFH так, что сторона FH лежит на отрезке BC, а вершина E – на отрезке AB. а) Докажите, что FH = 2DH. б) Найдите площадь прямоугольника DEFH, если AB = 4.

Решение: а)


1) ΔBEF – прямоугольный, EF⊥BC, ∠B = (180° – 120°) : 2 = 30°, тогда EF = BE по свойству катета, лежащего против угла 30°.

2) Пусть EF = DH = x , тогда BE = 2x , BF = x √3 по теореме Пифагора.

3) Так как ΔABC равнобедренный, значит, ∠B = ∠C = 30˚.

BD – биссектриса ∠B, значит ∠ABD = ∠DBC = 15˚.

4) Рассмотрим ΔDBH – прямоугольный, т.к. DH⊥BC.

2x = 4 – 2x
2x (√3 + 1) 4
1 = 2 – x
√3 + 1 2

√3 – 1 = 2 – x

x = 3 – √3

EF = 3 – √3

2) S DEFH = ED · EF = (3 – √3 ) · 2(3 – √3 )

S DEFH = 24 – 12√3.

Ответ: 24 – 12√3.


Задание № 17 - задание с развернутым ответом, это задание проверяет применение знаний и умений в практической деятельности и повседневной жизни, умение строить и исследовать математические модели. Это задание - текстовая задача с экономическим содержанием.

Пример 17. Вклад в размере 20 млн рублей планируется открыть на четыре года. В конце каждого года банк увеличивает вклад на 10% по сравнению с его размером в начале года. Кроме того, в начале третьего и четвёртого годов вкладчик ежегодно пополняет вклад на х млн. рублей, где х - целое число. Найдите наибольшее значение х , при котором банк за четыре года начислит на вклад меньше 17 млн рублей.

Решение: В конце первого года вклад составит 20 + 20 · 0,1 = 22 млн рублей, а в конце второго – 22 + 22 · 0,1 = 24,2 млн рублей. В начале третьего года вклад (в млн рублей) составит (24,2 + х ), а в конце - (24,2 + х) + (24,2 + х) · 0,1 = (26,62 + 1,1х ). В начале четвёртого года вклад составит (26,62 + 2,1х) , а в конце - (26,62 + 2,1х ) + (26,62 + 2,1х ) · 0,1 = (29,282 + 2,31х ). По условию, нужно найти наибольшее целое х, для которого выполнено неравенство

(29,282 + 2,31x ) – 20 – 2x < 17

29,282 + 2,31x – 20 – 2x < 17

0,31x < 17 + 20 – 29,282

0,31x < 7,718

x < 7718
310
x < 3859
155
x < 24 139
155

Наибольшее целое решение этого неравенства - число 24.

Ответ: 24.


Задание № 18 - задание повышенного уровня сложности с развернутым ответом. Это задание предназначено для конкурсного отбора в вузы с повышенными требованиями к математической подготовке абитуриентов. Задание высокого уровня сложности - это задание не на применение одного метода решения, а на комбинацию различных методов. Для успешного выполнения задания 18 необходим, кроме прочных математических знаний, также высокий уровень математической культуры.

При каких a система неравенств

x 2 + y 2 ≤ 2ay a 2 + 1
y + a ≤ |x | – a

имеет ровно два решения?

Решение: Данную систему можно переписать в виде

x 2 + (y a ) 2 ≤ 1
y ≤ |x | – a

Если нарисовать на плоскости множество решений первого неравенства, получится внутренность круга (с границей) радиуса 1 с центром в точке (0, а ). Множество решений второго неравенства – часть плоскости, лежащая под графиком функции y = | x | – a , причём последний есть график функции
y = | x | , сдвинутый вниз на а . Решение данной системы есть пересечение множеств решений каждого из неравенств.

Следовательно, два решения данная система будет иметь лишь в случае, изображённом на рис. 1.


Точки касания круга с прямыми и будут двумя решениями системы. Каждая из прямых наклонена к осям под углом 45°. Значит, треугольник PQR – прямоугольный равнобедренный. Точка Q имеет координаты (0, а ), а точка R – координаты (0, –а ). Кроме того, отрезки PR и PQ равны радиусу окружности, равному 1. Значит,

Qr = 2a = √2, a = √2 .
2
Ответ: a = √2 .
2


Задание № 19 - задание повышенного уровня сложности с развернутым ответом. Это задание предназначено для конкурсного отбора в вузы с повышенными требованиями к математической подготовке абитуриентов. Задание высокого уровня сложности - это задание не на применение одного метода решения, а на комбинацию различных методов. Для успешного выполнения задания 19 необходимо уметь осуществлять поиск решения, выбирая различные подходы из числа известных, модифицируя изученные методы.

Пусть Sn сумма п членов арифметической прогрессии (а п ). Известно, что S n + 1 = 2n 2 – 21n – 23.

а) Укажите формулу п -го члена этой прогрессии.

б) Найдите наименьшую по модулю сумму S n .

в) Найдите наименьшее п , при котором S n будет квадратом целого числа.

Решение : а) Очевидно, что a n = S n S n – 1 . Используя данную формулу, получаем:

S n = S (n – 1) + 1 = 2(n – 1) 2 – 21(n – 1) – 23 = 2n 2 – 25n ,

S n – 1 = S (n – 2) + 1 = 2(n – 1) 2 – 21(n – 2) – 23 = 2n 2 – 25n + 27

значит, a n = 2n 2 – 25n – (2n 2 – 29n + 27) = 4n – 27.

Б) Так как S n = 2n 2 – 25n , то рассмотрим функцию S (x ) = | 2x 2 – 25x| . Ее график можно увидеть на рисунке.


Очевидно, что наименьшее значение достигается в целочисленных точках, расположенных наиболее близко к нулям функции. Очевидно, что это точки х = 1, х = 12 и х = 13. Поскольку, S (1) = |S 1 | = |2 – 25| = 23, S (12) = |S 12 | = |2 · 144 – 25 · 12| = 12, S (13) = |S 13 | = |2 · 169 – 25 · 13| = 13, то наименьшее значение равно 12.

в) Из предыдущего пункта вытекает, что Sn положительно, начиная с n = 13. Так как S n = 2n 2 – 25n = n (2n – 25), то очевидный случай, когда данное выражение является полным квадратом, реализуется при n = 2n – 25, то есть при п = 25.

Осталось проверить значения с 13 до 25:

S 13 = 13 · 1, S 14 = 14 · 3, S 15 = 15 · 5, S 16 = 16 · 7, S 17 = 17 · 9, S 18 = 18 · 11, S 19 = 19 · 13, S 20 = 20 · 13, S 21 = 21 · 17, S 22 = 22 · 19, S 23 = 23 · 21, S 24 = 24 · 23.

Получается, что при меньших значениях п полный квадрат не достигается.

Ответ: а) a n = 4n – 27; б) 12; в) 25.

________________

*С мая 2017 года объединенная издательская группа «ДРОФА-ВЕНТАНА» входит в корпорацию «Российский учебник». В корпорацию также вошли издательство «Астрель» и цифровая образовательная платформа «LECTA». Генеральным директором назначен Александр Брычкин, выпускник Финансовой академии при Правительстве РФ, кандидат экономических наук, руководитель инновационных проектов издательства «ДРОФА» в сфере цифрового образования (электронные формы учебников, «Российская электронная школа», цифровая образовательная платформа LECTA). До прихода в издательство «ДРОФА» занимал позицию вице-президента по стратегическому развитию и инвестициям издательского холдинга «ЭКСМО-АСТ». Сегодня издательская корпорация «Российский учебник» обладает самым крупным портфелем учебников, включенных в Федеральный перечень - 485 наименований (примерно 40%, без учета учебников для коррекционной школы). Издательствам корпорации принадлежат наиболее востребованные российскими школами комплекты учебников по физике, черчению, биологии, химии, технологии, географии, астрономии - областям знаний, которые нужны для развития производственного потенциала страны. В портфель корпорации входят учебники и учебные пособия для начальной школы, удостоенные Премии Президента в области образования. Это учебники и пособия по предметным областям, которые необходимы для развития научно-технического и производственного потенциала России.

Статьи по теме